Kvetoslava Burda
AGH University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kvetoslava Burda.
Review of Scientific Instruments | 2014
Paweł Hermanowicz; Michal Sarna; Kvetoslava Burda; Halina Gabryś
We present an open source Java application for analysis of force curves and images recorded with the Atomic Force Microscope. AtomicJ supports a wide range of contact mechanics models and implements procedures that reduce the influence of deviations from the contact model. It generates maps of mechanical properties, including maps of Youngs modulus, adhesion force, and sample height. It can also calculate stacks, which reveal how samples response to deformation changes with indentation depth. AtomicJ analyzes force curves concurrently on multiple threads, which allows for high speed of analysis. It runs on all popular operating systems, including Windows, Linux, and Macintosh.
Biochemical Journal | 2003
Kvetoslava Burda; Jerzy Kruk; Georg H. Schmid; Kazimierz Strzałka
We have found that elevated copper concentrations, apart from the inhibition of oxygen evolution, changed the initial states distribution of the oxygen-evolving complex. Already at low concentrations, copper ions oxidized the low-potential form of cytochrome b (559) and also its high-potential form at higher concentrations at which fluorescence quenching was observed. We suggest that the primary target sites in Photosystem II for copper is tyrosine(z), both cytochrome b (559) forms and chlorophyll(z), and that these sites are the source of the copper-induced fluorescence quenching and oxygen evolution inhibition in Photosystem II.
Carcinogenesis | 2014
Damian Ryszawy; Michal Sarna; Monika Rak; Katarzyna Szpak; Sylwia Kedracka-Krok; Marta Michalik; Maciej Siedlar; Ewa K. Zuba-Surma; Kvetoslava Burda; Włodzimierz Korohoda; Zbigniew Madeja; Jarosław Czyż
Suppressive function of connexin(Cx)43 in carcinogenesis was recently contested by reports that showed a multifaceted function of Cx43 in cancer progression. These studies did not attempt to model the dynamics of intratumoral heterogeneity involved in the metastatic cascade. An unorthodox look at the phenotypic heterogeneity of prostate cancer cells in vitro enabled us to identify links between Cx43 functions and Snail-1-regulated functional speciation of invasive cells. Incomplete Snail-1-dependent phenotypic shifts accounted for the formation of phenotypically stable subclones of AT-2 cells. These subclones showed diverse predilection for invasive behavior. High Snail-1 and Cx43 levels accompanied high motility and nanomechanical elasticity of the fibroblastoid AT-2_Fi2 subclone, which determined its considerable invasiveness. Transforming growth factor-β and ectopic Snail-1 overexpression induced invasiveness and Cx43 expression in epithelioid AT-2 subclones and DU-145 cells. Functional links between Snail-1 function and Cx43 expression were confirmed by Cx43 downregulation and phenotypic shifts in AT-2_Fi2, DU-145 and MAT-LyLu cells upon Snail-1 silencing. Corresponding morphological changes and Snail-1 downregulation were seen upon Cx43 silencing in AT-2_Fi2 cells. This indicates that feedback loops between both proteins regulate cell invasive behavior. We demonstrate that Cx43 may differentially predispose prostate cancer cells for invasion in a coupling-dependent and coupling-independent manner. When extrapolated to in vivo conditions, these data show the complexity of Cx43 functions during the metastatic cascade of prostate cancer. They may explain how Cx43 confers a selective advantage during cooperative invasion of clonally evolving, invasive prostate cancer cell subpopulations.
FEBS Letters | 2001
Kvetoslava Burda; Klaus P. Bader; Georg H. Schmid
In time‐dependent measurements of oxygen evolution in tobacco thylakoid membranes we varied the fraction of H2 18O and the temperature and measured water splitting as 18O2, 16O18O, and 16O2 by mass spectrometry. We show that the approach to the equilibrium of the system after H2 18O addition can be very well understood in terms of the diffusion of water molecules. The equilibrium states of 16O2, 16O18O, and 18O2 evolution differ from the theoretical binomial distributions, which are expected under the prerequisite of ideal mixing of the water molecules and that of the chemical equivalence of H2 18O and H2 16O for an infinite cluster. The presence of this deviation means that there is a typical size of water clusters having access to cleavage by the water splitting enzyme. We estimated that this cluster contains about 12±2 water molecules.
Pigment Cell & Melanoma Research | 2013
Michal Sarna; Andrzej Zadlo; Anna Pilat; Magdalena Olchawa; Paraskevi Gkogkolou; Kvetoslava Burda; Markus Böhm; Tadeusz Sarna
Based on hitherto measurements of elasticity of various cells in vitro and ex vivo, cancer cells are generally believed to be much softer than their normal counterparts. In spite of significant research efforts on the elasticity of cancer cells, only few studies were undertaken with melanoma cells. However, there are no reports concerning pigmented melanoma cells. Here, we report for the first time on the elasticity of pigmented human melanoma cells. The obtained data show that melanin significantly increases the stiffness of pigmented melanoma cells and that the effect depends on the amount of melanin inside the cells. The dramatic impact of melanin on the nanomechanical properties of cells puts into question widely accepted paradigm about all cancer cells being softer than their normal counterparts. Our findings reveal significant limitations of the nanodiagnosis approach for melanoma and contribute to better understanding of cell elasticity.
Experimental Dermatology | 2014
Michal Sarna; Andrzej Zadlo; Paweł Hermanowicz; Zbigniew Madeja; Kvetoslava Burda; Tadeusz Sarna
The relationship between melanin pigmentation and metastatic phenotype of melanoma cells is an intricate issue, which needs to be unambiguously determined to fully understand the process of metastasis of malignant melanoma. Despite significant research efforts undertaken to solve this problem, the outcomes are far from being satisfying. Importantly, none of the proposed explanations takes into consideration biophysical aspects of the phenomenon such as cell elasticity. Recently, we have demonstrated that melanin granules dramatically modify elastic properties of pigmented melanoma cells. This prompted us to examine the mechanical effects of melanosomes on the transmigration abilities of melanoma cells. Here, we show for the first time that melanin granules inhibit transmigration abilities of melanoma cells in a number of granules dependent manner. Moreover, we demonstrate that the inhibitory effect of melanosomes is mechanical in nature. Results obtained in this study demonstrate that cell elasticity may play a key role in the efficiency of melanoma cells spread in vivo. Our findings may also contribute to better understanding of the process of metastasis of malignant melanoma.
PLOS ONE | 2015
Michal Sarna; Katarzyna Wójcik; Paweł Hermanowicz; Dawid Wnuk; Kvetoslava Burda; Marek Sanak; Jarosław Czyż; Marta Michalik
During asthma development, differentiation of epithelial cells and fibroblasts towards the contractile phenotype is associated with bronchial wall remodeling and airway constriction. Pathological fibroblast-to-myofibroblast transition (FMT) can be triggered by local inflammation of bronchial walls. Recently, we have demonstrated that human bronchial fibroblasts (HBFs) derived from asthmatic patients display some inherent features which facilitate their FMT in vitro. In spite of intensive research efforts, these properties remain unknown. Importantly, the role of undifferentiated HBFs in the asthmatic process was systematically omitted. Specifically, biomechanical properties of undifferentiated HBFs have not been considered in either FMT or airway remodeling in vivo. Here, we combine atomic force spectroscopy with fluorescence microscopy to compare mechanical properties and actin cytoskeleton architecture of HBFs derived from asthmatic patients and non-asthmatic donors. Our results demonstrate that asthmatic HBFs form thick and aligned ‘ventral’ stress fibers accompanied by enlarged focal adhesions. The differences in cytoskeleton architecture between asthmatic and non-asthmatic cells correlate with higher elastic modulus of asthmatic HBFs and their increased predilection to TGF-β-induced FMT. Due to the obvious links between cytoskeleton architecture and mechanical equilibrium, our observations indicate that HBFs derived from asthmatic bronchi can develop considerably higher static tension than non-asthmatic HBFs. This previously unexplored property of asthmatic HBFs may be potentially important for their myofibroblastic differentiation and bronchial wall remodeling during asthma development.
Chemico-Biological Interactions | 2015
Dominika Augustyńska; Małgorzata Jemioła-Rzemińska; Kvetoslava Burda; Kazimierz Strzałka
Carotenoids, which are known primarily for their photoprotective and antioxidant properties, may also strongly influence the physical properties of membranes. The localization and orientation of these pigments in the lipid bilayer depends on their structure and is determined by their interactions with lipid molecules. This affects both phase behavior and the mechanical properties of membranes. Differential scanning calorimetry (DSC) and atomic force microscopy (AFM) allowed us to gain a direct insight into the differences between the interaction of the non-polar β-carotene and polar zeaxanthin embedded into DPPC liposomes. DSC results showed that zeaxanthin, having polar ionone rings, interacts more strongly with the membrane lipids than β-carotene. The decrease in molar heat capacity by a factor of 2 with a simultaneous broadening of the main phase transition (gel-to-liquid crystalline phase transition) as compared to the two other systems studied suggests some increased length of the coupled interactions between the polar xanthophyll and lipids. Long-distance interactions lead to the formation of larger clusters which may exhibit higher flexibility than small clusters when only short-distance interactions occur. AFM experiments show that adhesive forces are 2 and 10 times higher for DPPC membranes enriched in β-carotene and zeaxanthin, respectively, than those observed for an untreated system. Temperature dependent measurements of adhesion revealed that subphases can be formed in the gel lamellar state of DPPC bilayers. The presence of the non-polar carotenoid enhanced the effect and even a bifurcation of the substates was detected within a temperature range of 30.0-32.5°C prior to pretransition. It is the first time when the presence of subphases has been demonstrated. This knowledge can be helpful in better understanding the functioning of carotenoids in biological membranes. AFM seem to be a very unique and sensitive method for detecting such fine changes in the lipid bilayers.
Biochimica et Biophysica Acta | 2001
Kvetoslava Burda; Georg H. Schmid
We measured the temperature dependence of oxygen evolution in thylakoids from tobacco using mass spectrometry and high resolution polarography. We determined the initial S-state distribution and the efficiency of the transition between these states including the probability of the O(2) yield through a fast mode. We observed discontinuous changes of the parameters at the temperatures 11 degrees C, 15 degrees C and 21 degrees C. Due to the mass spectroscopy data we think that the irregularity observed at 11 degrees C is due to conformational changes within the water catalytic site. We show that the different contributions of the slow and fast modes of oxygen evolution and of the water molecule exchange are correlated and that their behavior can be explained in terms of the H(2)O accessibility to the water splitting enzyme.
Archive | 2008
Aleksandra Orzechowska; Ralph Bock; Marzena de Odrowaž Piramowicz; Kazimierz Strzałka; Kvetoslava Burda
We investigated the influence of cuprous ions, Cu2+, on energy and electron transport in photosystem II (PSII) using fluorescence methods. It has been suggested that the primary targets in PSII for copper are tyrosine Z, cytochrome b559, chlorophyll Z and the quinone-iron complex. Here, we present studies on Cu2+ action on thylakoid membranes and thylakoids enriched in PSII isolated from a wild-type tobacco and from a mutant with a point mutation on the β-chain of cytochrome b559. We observed that copper ions modify in various ways the efficiency of the energy and electron transfer in PSII in both the wild type and the mutant. The action of Cu2+ is additionally influenced by the presence of sulfate anions. We can distinguish at least three different modes of copper acting on the electron and energy transfer within PSII.