Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kwabena Boahen is active.

Publication


Featured researches published by Kwabena Boahen.


Frontiers in Neuroscience | 2011

Neuromorphic silicon neuron circuits

Giacomo Indiveri; Bernabé Linares-Barranco; Tara Julia Hamilton; André van Schaik; Ralph Etienne-Cummings; Tobi Delbruck; Shih-Chii Liu; Piotr Dudek; Philipp Häfliger; Sylvie Renaud; Johannes Schemmel; Gert Cauwenberghs; John V. Arthur; Kai Hynna; Fopefolu Folowosele; Sylvain Saïghi; Teresa Serrano-Gotarredona; Jayawan H. B. Wijekoon; Yingxue Wang; Kwabena Boahen

Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain–machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance-based Hodgkin–Huxley models to bi-dimensional generalized adaptive integrate and fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips.


IEEE Transactions on Circuits and Systems Ii: Analog and Digital Signal Processing | 2000

Point-to-point connectivity between neuromorphic chips using address events

Kwabena Boahen

This paper discusses connectivity between neuromorphic chips, which use the timing of fixed-height fixed-width pulses to encode information. Address-events (log/sub 2/(N)-bit packets that uniquely identify one of N neurons) are used to transmit these pulses in real time on a random-access time-multiplexed communication channel. Activity is assumed to consist of neuronal ensembles-spikes clustered in space and in time. This paper quantifies tradeoffs faced in allocating bandwidth, granting access, and queuing, as well as throughput requirements, and concludes that an arbitered channel design is the best choice. The arbitered channel is implemented with a formal design methodology for asynchronous digital VLSI CMOS systems, after introducing the reader to this top-down synthesis technique. Following the evolution of three generations of designs, it is shown how the overhead of arbitrating, and encoding and decoding, can be reduced in area (from N to /spl radic/N) by organizing neurons into rows and columns, and reduced in time (from log/sub 2/(N) to 2) by exploiting locality in the arbiter tree and in the row-column architecture, and clustered activity. Throughput is boosted by pipelining and by reading spikes in parallel. Simple techniques that reduce crosstalk in these mixed analog-digital systems are described.


Proceedings of the IEEE | 2014

Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations

Ben Varkey Benjamin; Peiran Gao; Emmett McQuinn; Swadesh Choudhary; Anand R. Chandrasekaran; Jean-Marie Bussat; Rodrigo Alvarez-Icaza; John V. Arthur; Paul A. Merolla; Kwabena Boahen

In this paper, we describe the design of Neurogrid, a neuromorphic system for simulating large-scale neural models in real time. Neuromorphic systems realize the function of biological neural systems by emulating their structure. Designers of such systems face three major design choices: 1) whether to emulate the four neural elements-axonal arbor, synapse, dendritic tree, and soma-with dedicated or shared electronic circuits; 2) whether to implement these electronic circuits in an analog or digital manner; and 3) whether to interconnect arrays of these silicon neurons with a mesh or a tree network. The choices we made were: 1) we emulated all neural elements except the soma with shared electronic circuits; this choice maximized the number of synaptic connections; 2) we realized all electronic circuits except those for axonal arbors in an analog manner; this choice maximized energy efficiency; and 3) we interconnected neural arrays in a tree network; this choice maximized throughput. These three choices made it possible to simulate a million neurons with billions of synaptic connections in real time-for the first time-using 16 Neurocores integrated on a board that consumes three watts.


IEEE Transactions on Neural Networks | 1991

Current-mode subthreshold MOS circuits for analog VLSI neural systems

Andreas G. Andreou; Kwabena Boahen; Philippe O. Pouliquen; Aleksandra Pavasović; Robert E. Jenkins; Kim Strohbehn

An overview of the current-mode approach for designing analog VLSI neural systems in subthreshold CMOS technology is presented. Emphasis is given to design techniques at the device level using the current-controlled current conveyor and the translinear principle. Circuits for associative memory and silicon retina systems are used as examples. The design methodology and how it relates to actual biological microcircuits are discussed.


IEEE Journal of Solid-state Circuits | 2003

A biomorphic digital image sensor

Eugenio Culurciello; Ralph Etienne-Cummings; Kwabena Boahen

An arbitrated address-event imager has been designed and fabricated in a 0.6-/spl mu/m CMOS process. The imager is composed of 80 /spl times/ 60 pixels of 32 /spl times/ 30 /spl mu/m. The value of the light intensity collected by each photosensitive element is inversely proportional to the pixels interspike time interval. The readout of each spike is initiated by the individual pixel; therefore, the available output bandwidth is allocated according to pixel output demand. This encoding of light intensities favors brighter pixels, equalizes the number of integrated photons across light intensity, and minimizes power consumption. Tests conducted on the imager showed a large output dynamic range of 180 dB (under bright local illumination) for an individual pixel. The array, on the other hand, produced a dynamic range of 120 dB (under uniform bright illumination and when no lower bound was placed on the update rate per pixel). The dynamic range is 48.9 dB value at 30-pixel updates/s. Power consumption is 3.4 mW in uniform indoor light and a mean event rate of 200 kHz, which updates each pixel 41.6 times per second. The imager is capable of updating each pixel 8.3K times per second (under bright local illumination).


Analog Integrated Circuits and Signal Processing | 1996

Translinear circuits in subthreshold MOS

Andreas G. Andreou; Kwabena Boahen

In this paper we provide an overview of translinear circuit design using MOS transistors operating in subthreshold region. We contrast the bipolar and MOS subthreshold characteristics and extend the translinear principle to the subthreshold MOS ohmic region through a drain/source current decomposition. A front/back-gate current decomposition is adopted; this facilitates the analysis of translinear loops, including multiple input floating gate MOS transistors. Circuit examples drawn from working systems designed and fabricated in standard digital CMOS oriented process are used as vehicles to illustrate key design considerations, systematic analysis procedures, and limitations imposed by the structure and physics of MOS transistors. Finally, we present the design of an analog VLSI “translinear system” with over 590,000 transistors in subthreshold CMOS. This performs phototransduction, amplification, edge enhancement and local gain control at the pixel level.


IEEE Transactions on Circuits and Systems | 2004

A burst-mode word-serial address-event link-I: transmitter design

Kwabena Boahen

We present a transmitter for a scalable multiple-access inter-chip link that communicates binary activity between two-dimensional arrays fabricated in deep submicrometer CMOS. Transmission is initiated by active cells but cells are not read individually. An entire row is read in parallel; this increases communication capacity with integration density. Access is random but not inequitable. A row is not reread until all those waiting are serviced; this increases parallelism as more of its cells become active in the mean time. Row and column addresses identify active cells but they are not transmitted simultaneously. The row address is followed sequentially by a column address for each active cell; this cuts pad count in half without sacrificing capacity. We synthesized an asynchronous implementation by performing a series of program decompositions, starting from a high-level description. Links using this design have been implemented successfully in three generations of submicrometer CMOS technology.


Neuromorphic systems engineering | 1998

Communicating neuronal ensembles between neuromorphic chips

Kwabena Boahen

The small number of input-output connections available with standard chip-packaging technology, and the small number of routing layers available in VLSI technology, place severe limitations on the degree of intra- and interchip connectivity that can be realized in multichip neuromorphic systems. Inspired by the success of time-division multiplexing in communications [16] and computer networks [19], many researchers have adopted multiplexing to solve the connectivity problem [12, 67, 17]. Multiplexing is an effective way of leveraging the 5 order-of-magnitude difference in bandwidth between a neuron (hundreds of Hz) and a digital bus (tens of megahertz), enabling us to replace dedicated point-to-point connections among thousands of neurons with a handful of high-speed connections and thousands of switches (transistors). This approach pays off in VLSI technology because transistors take up a lot less area than wires, and are becoming relatively more and more compact as the fabrication process scales down to deep submicron feature sizes.


IEEE Transactions on Circuits and Systems I-regular Papers | 2005

Neuromorphic implementation of orientation hypercolumns

Thomas Yu Wing Choi; Paul Merolla; John V. Arthur; Kwabena Boahen; Bertram E. Shi

Neurons in the mammalian primary visual cortex are selective along multiple stimulus dimensions, including retinal position, spatial frequency, and orientation. Neurons tuned to different stimulus features but the same retinal position are grouped into retinotopic arrays of hypercolumns. This paper describes a neuromorphic implementation of orientation hypercolumns, which consists of a single silicon retina feeding multiple chips, each of which contains an array of neurons tuned to the same orientation and spatial frequency, but different retinal locations. All chips operate in continuous time, and communicate with each other using spikes transmitted by the address-event representation protocol. This system is modular in the sense that orientation coverage can be increased simply by adding more chips, and expandable in the sense that its output can be used to construct neurons tuned to other stimulus dimensions. We present measured results from the system, demonstrating neuronal selectivity along position, spatial frequency and orientation. We also demonstrate that the system supports recurrent feedback between neurons within one hypercolumn, even though they reside on different chips. The measured results from the system are in excellent concordance with theoretical predictions.


IEEE Transactions on Biomedical Engineering | 2004

Optic nerve signals in a neuromorphic chip I: Outer and inner retina models

Kareem A. Zaghloul; Kwabena Boahen

We present a novel model for the mammalian retina and analyze its behavior. Our outer retina model performs bandpass spatiotemporal filtering. It is comprised of two reciprocally connected resistive grids that model the cone and horizontal cell syncytia. We show analytically that its sensitivity is proportional to the space-constant-ratio of the two grids while its half-max response is set by the local average intensity. Thus, this outer retina model realizes luminance adaptation. Our inner retina model performs high-pass temporal filtering. It features slow negative feedback whose strength is modulated by a locally computed measure of temporal contrast, modeling two kinds of amacrine cells, one narrow-field, the other wide-field. We show analytically that, when the input is spectrally pure, the corner-frequency tracks the input frequency. But when the input is broadband, the corner frequency is proportional to contrast. Thus, this inner retina model realizes temporal frequency adaptation as well as contrast gain control. We present CMOS circuit designs for our retina model in this paper as well. Experimental measurements from the fabricated chip, and validation of our analytical results, are presented in the companion paper [Zaghloul and Boahen (2004)].

Collaboration


Dive into the Kwabena Boahen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bertram E. Shi

Hong Kong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Merolla

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Kai M. Hynna

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge