Kwame Sefah
University of Florida
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kwame Sefah.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Dihua Shangguan; Ying Li; Zhiwen Tang; Zehui Charles Cao; Hui William Chen; Prabodhika Mallikaratchy; Kwame Sefah; Chaoyong James Yang; Weihong Tan
Using cell-based aptamer selection, we have developed a strategy to use the differences at the molecular level between any two types of cells for the identification of molecular signatures on the surface of targeted cells. A group of aptamers have been generated for the specific recognition of leukemia cells. The selected aptamers can bind to target cells with an equilibrium dissociation constant (Kd) in the nanomolar-to-picomolar range. The cell-based selection process is simple, fast, straightforward, and reproducible, and, most importantly, can be done without prior knowledge of target molecules. The selected aptamers can specifically recognize target leukemia cells mixed with normal human bone marrow aspirates and can also identify cancer cells closely related to the target cell line in real clinical specimens. The cell-based aptamer selection holds a great promise in developing specific molecular probes for cancer diagnosis and cancer biomarker discovery.
Nature Protocols | 2010
Kwame Sefah; Dihua Shangguan; Xiangling Xiong; Meghan B. O'Donoghue; Weihong Tan
In the past two decades, high-affinity nucleic acid aptamers have been developed for a wide variety of pure molecules and complex systems such as live cells. Conceptually, aptamers are developed by an evolutionary process, whereby, as selection progresses, sequences with a certain conformation capable of binding to the target of interest emerge and dominate the pool. This protocol, cell-SELEX (systematic evolution of ligands by exponential enrichment), is a method that can generate DNA aptamers that can bind specifically to a cell type of interest. Commonly, a cancer cell line is used as the target to generate aptamers that can differentiate that cell type from other cancers or normal cells. A single-stranded DNA (ssDNA) library pool is incubated with the target cells. Nonbinding sequences are washed off and bound sequences are recovered from the cells by heating cell-DNA complexes at 95 °C, followed by centrifugation. The recovered pool is incubated with the control cell line to filter out the sequences that bind to common molecules on both the target and the control, leading to the enrichment of specific binders to the target. Binding sequences are amplified by PCR using fluorescein isothiocyanate–labeled sense and biotin-labeled antisense primers. This is followed by removal of antisense strands to generate an ssDNA pool for subsequent rounds of selection. The enrichment of the selected pools is monitored by flow cytometry binding assays, with selected pools having increased fluorescence compared with the unselected DNA library. The procedure, from design of oligonucleotides to enrichment of the selected pools, takes ∼3 months.
Journal of Proteome Research | 2008
Dihua Shangguan; Zehui Cao; Ling Meng; Prabodhika Mallikaratchy; Kwame Sefah; Hui Wang; Ying Li; Weihong Tan
Disease biomarkers play critical roles in the management of various pathological conditions of diseases. This involves diagnosing diseases, predicting disease progression and monitoring the efficacy of treatment modalities. While efforts to identify specific disease biomarkers using a variety of technologies has increased the number of biomarkers or augmented information about them, the effective use of disease-specific biomarkers is still scarce. Here, we report that a high expression of protein tyrosine kinase 7 (PTK7), a transmembrane receptor protein tyrosine kinase-like molecule, was discovered in a series of leukemia cell lines using whole cell aptamer selection. With the implementation of a two-step strategy (aptamer selection and biomarker discovery), combined with mass spectrometry, PTK7 was ultimately identified as a potential biomarker for T-cell acute lymphoblastic leukemia (T-ALL). Specifically, the aptamers for T-ALL cells were selected using the cell-SELEX process, without any prior knowledge of the cell biomarker population, conjugated with magnetic beads and then used to capture and purify their binding targets on the leukemia cell surface. This demonstrates that a panel of molecular aptamers can be easily generated for a specific type of diseased cells. It further demonstrates that this two-step strategy, that is, first selecting cancer cell-specific aptamers and then identifying their binding target proteins, has major clinical implications in that the technique promises to substantially improve the overall effectiveness of biomarker discovery. Specifically, our strategy will enable efficient discovery of new malignancy-related biomarkers, facilitate the development of diagnostic tools and therapeutic approaches to cancer, and markedly improve our understanding of cancer biology.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Yanrong Wu; Kwame Sefah; Haipeng Liu; Ruowen Wang; Weihong Tan
We report the design of a self-assembled aptamer–micelle nanostructure that achieves selective and strong binding of otherwise low-affinity aptamers at physiological conditions. Specific recognition ability is directly built into the nanostructures. The attachment of a lipid tail onto the end of nucleic acid aptamers provides these unique nanostructures with an internalization pathway. Other merits include: extremely low off rate once bound with target cells, rapid recognition ability with enhanced sensitivity, low critical micelle concentration values, and dual-drug delivery pathways. To prove the potential detection/delivery application of this aptamer–micelle in biological living systems, we mimicked a tumor site in the blood stream by immobilizing tumor cells onto the surface of a flow channel device. Flushing the aptamer–micelles through the channel demonstrated their selective recognition ability under flow circulation in human whole-blood sample. The aptamer–micelles show great dynamic specificity in flow channel systems that mimic drug delivery in the blood system. Therefore, our DNA aptamer–micelle assembly has shown high potential for cancer cell recognition and for in vivo drug delivery applications.
ChemMedChem | 2008
Hui William Chen; Colin D. Medley; Kwame Sefah; Dihua Shangguan; Zhiwen Tang; Ling Meng; Josh Smith; Weihong Tan
Early diagnosis is the way to improve the rate of lung cancer survival, but is almost impossible today due to the lack of molecular probes that recognize lung cancer cells sensitively and selectively. We developed a new aptamer approach for the recognition of specific small‐cell lung cancer (SCLC) cell‐surface molecular markers. Our approach relies on cell‐based systematic evolution of ligands by exponential enrichment (cell‐SELEX) to evolve aptamers for whole live cells that express a variety of surface markers representing molecular differences among cancer cells. When applied to different lung cancer cells including those from patient samples, these aptamers bind to SCLC cells with high affinity and specificity in various assay formats. When conjugated with magnetic and fluorescent nanoparticles, the aptamer nanoconjugates could effectively extract SCLC cells from mixed cell media for isolation, enrichment, and sensitive detection. These studies demonstrate the potential of the aptamer approach for early lung cancer detection.
Langmuir | 2008
Yu-Fen Huang; Kwame Sefah; Suwussa Bamrungsap; Huan-Tsung Chang; Weihong Tan
Safe and effective photothermal therapy depends on efficient delivery of heat for killing cells and molecular specificity for targeting cells. To address these requirements, we have designed an aptamer-based nanostructure which combines the high absorption efficiency of Au-Ag nanorods with the target specificity of molecular aptamers, a combination resulting in the development of an efficient and selective therapeutic agent for targeted cancer cell photothermal destruction. Most nanomaterials, such as gold nanoshells or nanorods (NRs), require a relatively high power of laser irradiation (1 x 10 (5)-1 x 10 (10) W/m (2)). In contrast, the high absorption characteristic of our Au-Ag NRs requires only 8.5 x 10 (4) W/m (2) laser exposure to induce 93 (+/-11)% cell death of NR-aptamer-labeled cells. Aptamers, the second component of the nanostructure, are generated from a cell-SELEX (systematic evolution of ligands by exponential enrichment) process and can be easily selected for specific recognition of individual tumor cell types without prior knowledge of the biomarkers for the cell. When tested with both cell suspensions and artificial solid tumor samples, these aptamer conjugates were shown to have excellent hyperthermia efficiency and selectivity. Under a specific laser intensity and duration of laser exposure, about 50 (+/-1)% of target (CEM) cells were severely damaged, while more than 87 (+/-1)% of control (NB-4) cells remained intact in a suspension cell mixture. These results indicate that the Au-Ag nanorod combination offers selective and efficient photothermal killing of targeted tumor cells, thus satisfying the two key challenges noted above. Consequently, for future in vivo application, it is fully anticipated that the tumor tissue will be selectively destroyed at laser energies which will not harm the surrounding normal tissue.
Leukemia | 2009
Kwame Sefah; Zhiwen Tang; Dihua Shangguan; Hui William Chen; Dalia Lopez-Colon; Yunjie Li; Parag Parekh; Jennifer Martin; Ling Meng; Joseph A. Phillips; Youngmi Kim; Weihong Tan
Cell surface proteins can play important roles in cancer pathogenesis. Comprehensive understanding of the surface protein expression patterns of tumor cells and, consequently, the pathogenesis of tumor cells depends on molecular probes against these proteins. To be used effectively for tumor diagnosis, classification and therapy, such probes would be capable of specific binding to targeted tumor cells. Molecular aptamers, designer DNA–RNA probes, can address this challenge by recognizing proteins, peptides and other small molecules with high affinity and specificity. Through a process known as cell-based SELEX, we used live acute myeloid leukemia (AML) cells to select a group of DNA aptamers, which can recognize AML cells with dissociation constants (Kds) in the nanomolar range. Interestingly, one aptamer (KH1C12) compared with two control cell lines (K562 and NB4) showed significant selectivity to the target AML cell line (HL60) and could recognize the target cells within a complex mixture of normal bone marrow aspirates. The other two aptamers KK1B10 and KK1D04 recognize targets associated with monocytic differentiation. Our studies show that the selected aptamers can be used as a molecular tool for further understanding surface protein expression patterns on tumor cells and thus providing a foundation for effective molecular analysis of leukemia and its subcategories.
Analyst | 2009
Kwame Sefah; Joseph A. Phillips; Xiangling Xiong; Ling Meng; Dimitri Van Simaeys; Hui Chen; Jennifer Martin; Weihong Tan
Oligonucleotides were once considered only functional as molecules for the storage of genetic information. However, the discovery of RNAzymes, and later, DNAzymes, unravelled the innate potential of oligonucleotides in many other biological applications. In the last two decades, these applications have been further expanded through the introduction of Systematic Evolution of Ligands by EXponential enrichment (SELEX) which has generated, by repeated rounds of in vitro selection, a type of molecular probe termed aptamers. Aptamers are oligonucleic acid (or peptide) molecules that can bind to various molecular targets and are viewed as complements to antibodies. Aptamers have found applications in many areas, such as bio-technology, medicine, pharmacology, microbiology, and analytical chemistry, including chromatographic separation and biosensors. In this review, we focus on the use of aptamers in the development of biosensors. Coupled with their ability to bind a variety of targets, the robust nature of oligonucleotides, in terms of synthesis, storage, and wide range of temperature stability and chemical manipulation, makes them highly suitable for biosensor design and engineering. Among the many design strategies, we discuss three general paradigms that have appeared most frequently in the literature: structure-switching, enzyme-based, and aptazyme-based designs.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Kwame Sefah; Zunyi Yang; Kevin M. Bradley; Shuichi Hoshika; Elizabeth Jiménez; Liqin Zhang; Guizhi Zhu; Savita Shanker; Fahong Yu; Diane Turek; Weihong Tan; Steven A. Benner
Significance Many chemicals are valuable because they bind to other molecules. Chemical theory cannot directly design “binders.” However, we might recreate in the laboratory the Darwinian processes that nature uses to create binders. This in vitro evolution uses nucleic acids as binders, libraries of DNA/RNA to survive a selection challenge before they can have “children” (systematic evolution of ligands by exponential enrichment, SELEX). Unfortunately, with only four nucleotides, natural DNA/RNA often yields only poor binders, perhaps because they are built from only four building blocks. Synthetic biology has increased the number of DNA/RNA building blocks, with tools to sequence, PCR amplify, and clone artificially expanded genetic information systems (AEGISs). We report here the first example of a SELEX using AEGIS, producing a molecule that binds to cancer cells. Artificially expanded genetic information systems (AEGISs) are unnatural forms of DNA that increase the number of independently replicating nucleotide building blocks. To do this, AEGIS pairs are joined by different arrangements of hydrogen bond donor and acceptor groups, all while retaining their Watson–Crick geometries. We report here a unique case where AEGIS DNA has been used to execute a systematic evolution of ligands by exponential enrichment (SELEX) experiment. This AEGIS–SELEX was designed to create AEGIS oligonucleotides that bind to a line of breast cancer cells. AEGIS–SELEX delivered an AEGIS aptamer (ZAP-2012) built from six different kinds of nucleotides (the standard G, A, C, and T, and the AEGIS nonstandard P and Z nucleotides, the last having a nitro functionality not found in standard DNA). ZAP-2012 has a dissociation constant of 30 nM against these cells. The affinity is diminished or lost when Z or P (or both) is replaced by standard nucleotides and compares well with affinities of standard GACT aptamers selected against cell lines using standard SELEX. The success of AEGIS–SELEX relies on various innovations, including (i) the ability to synthesize GACTZP libraries, (ii) polymerases that PCR amplify GACTZP DNA with little loss of the AEGIS nonstandard nucleotides, and (iii) technologies to deep sequence GACTZP DNA survivors. These results take the next step toward expanding the power and utility of SELEX and offer an AEGIS–SELEX that could possibly generate receptors, ligands, and catalysts having sequence diversities nearer to that displayed by proteins.
PLOS ONE | 2010
Kwame Sefah; Ling Meng; Dalia Lopez-Colon; Elizabeth Jiménez; Chen Liu; Weihong Tan
Background Understanding the molecular features of specific tumors can increase our knowledge about the mechanism(s) underlying disease development and progression. This is particularly significant for colorectal cancer, which is a heterogeneous complex of diseases developed in a sequential manner through a multistep carcinogenic process. As such, it is likely that tumors with similar characteristics might originate in the same manner and have a similar molecular behavior. Therefore, specific mapping of the molecular features can be potentially useful for both tumor classification and the development of appropriate therapeutic regimens. However, this can only be accomplished by developing high-affinity molecular probes with the ability to recognize specific markers associated with different tumors. Aptamers can most easily meet this challenge based on their target diversity, flexible manipulation and ease of development. Methodology and Results Using a method known as cell-based Systematic Evolution of Ligands by Exponential enrichment (cell-SELEX) and colorectal cancer cultured cell lines DLD-1 and HCT 116, we selected a panel of target-specific aptamers. Binding studies by flow cytometry and confocal microscopy showed that these aptamers have high affinity and selectivity. Our data further show that these aptamers neither recognize normal colon cells (cultured and fresh), nor do they recognize most other cancer cell lines tested. Conclusion/Significance The selected aptamers can identify specific biomarkers associated with colorectal cancers. We believe that these probes could be further developed for early disease detection, as well as prognostic markers, of colorectal cancers.