Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kwan Ha Shin is active.

Publication


Featured researches published by Kwan Ha Shin.


Journal of Materials Chemistry | 2012

Nanofibrous gelatin–silica hybrid scaffolds mimicking the native extracellular matrix (ECM) using thermally induced phase separation

Bo Lei; Kwan Ha Shin; Da Young Noh; In Hwan Jo; Young Hag Koh; Won Young Choi; Hyoun Ee Kim

We herein propose a novel way of producing nanofibrous gelatin–silica hybrid scaffolds through thermally induced phase-separation (TIPS) particularly using mixtures of gelatin solution and silica sol, which can mimic the physical structure, chemical composition, and eventually functions of the native bone extracellular matrix (ECM). The gelatin solutions were homogeneously hybridized with various contents of a silica sol using simple magnetic stirring, which enabled the construction of a nanofibrous structure with a uniform distribution of the silica in the gelatin nanofibers. The nanofibrous gelatin–silica hybrid scaffolds showed much better mechanical properties and in vitro biodegradation stability and apatite-forming ability than the nanofibrous pure gelatin scaffold, which were achieved by the presence of a stiff, bioactive silica phase in the nanofibers and the interaction between the silica hydroxyls and the amino group in the gelatin polymer. In addition, the nanofibrous gelatin–silica hybrid scaffold with a silica content of 30 wt% showed reasonably high in vitro biocompatibility. These findings suggest that the highly porous, nanofibrous hybrid structure mimicking the bone ECM can provide an excellent matrix for bone tissue regeneration.


Acta Biomaterialia | 2012

Reverse freeze casting: a new method for fabricating highly porous titanium scaffolds with aligned large pores.

Se Won Yook; Hyun Do Jung; Chang Hoon Park; Kwan Ha Shin; Young Hag Koh; Y. Estrin; Hyoun Ee Kim

Highly porous titanium with aligned large pores up to 500 μm in size, which is suitable for scaffold applications, was successfully fabricated using the reverse freeze casting method. In this process we have newly developed, the Ti powders migrated spontaneously along the pre-aligned camphene boundaries at a temperature of 45.5°C and formed a titanium-camphene mixture with an aligned structure; this was followed by freeze drying and sintering. As the casting time increased from 24 to 48 h, the initial columnar structures turned into lamellar structures, with the porosity decreasing from 69 to 51%. This reduction in porosity caused the compressive yield strength to increase from 121 to 302 MPa, with an elastic modulus of the samples being in the range of 2-5 GPa. In addition, it was demonstrated that reverse freeze casting can also be successfully applied to various other raw powders, suggesting that the method developed in this work opens up new avenues for the production of a range of porous metallic and ceramic scaffolds with highly aligned pores.


Materials Science and Engineering: C | 2013

Sol–gel derived nanoscale bioactive glass (NBG) particles reinforced poly(ε-caprolactone) composites for bone tissue engineering

Bo Lei; Kwan Ha Shin; Da Young Noh; In Hwan Jo; Young Hag Koh; Hyoun Ee Kim; Sung Eun Kim

This study investigated the effect of the addition of sol-gel derived nanoscale bioactive glass (NBG) particles on the mechanical properties and biological performances of PCL polymer, in order to evaluate the potential applications of PCL/NBG composites for bone tissue regeneration. Regardless of the NBG contents (10, 20, and 30 wt.%), the NBG particles, which were synthesized through the sol-gel process using polyethylene glycol (PEG) polymer as a template, could be uniformly dispersed in the PCL matrix, while generating pores in the PCL/NBG composites. The elastic modulus of the PCL/NBG composites increased remarkably from 89±11 MPa to 383±50 MPa with increasing NBG content from 0 to 30 wt.%, while still showing good ultimate tensile strength in the range of 15-19 MPa. The hydrophilicity, water absorption and degradation behavior of the PCL/NBG composites were also enhanced by the addition of the NBG particles. Furthermore, the PCL/NBG composite with a NBG content of 30 wt.% showed significantly enhanced in vitro bioactivity and cellular response compared to those of the pure PCL.


Journal of Biomedical Materials Research Part B | 2012

Bioactive glass microspheres as reinforcement for improving the mechanical properties and biological performance of poly(ε-caprolactone) polymer for bone tissue regeneration†

Bo Lei; Kwan Ha Shin; Da Young Noh; Young Hag Koh; Won Young Choi; Hyoun Ee Kim

This study examined the utility of sol-gel-derived bioactive glass microspheres (BGMs) as a reinforcement to improve the mechanical properties and biological performance of poly(ε-caprolactone) (PCL) polymer. All of the PCL-BGMs composites produced, with a variety of BGMs contents (10, 20, and 30 wt %), showed a uniform distribution of the BGMs in the PCL matrix, particularly owing to their spherical shape and small size. This led to a considerable increase in the elastic modulus from 93 ± 12 MPa to 635 ± 179 MPa with increasing BGMs content from 0 to 30 wt %. Furthermore, the addition of the BGMs to the PCL polymer significantly increased the hydrophilicity of the PCL-BGMs composites, which led to a higher water absorption and degradation rate. The PCL-BGMs composite with a BGMs content of 30 wt % showed vigorous growth of apatite crystals with a high aspect ratio on its surface after soaking in the simulated body fluid for 7 days, resulting in the creation of a porous carbonate hydroxyapatite layer.


Journal of Biomedical Materials Research Part B | 2014

Porous gelatin–siloxane hybrid scaffolds with biomimetic structure and properties for bone tissue regeneration

Bo Lei; Kwan Ha Shin; Young Hag Koh; Hyoun Ee Kim

We produced highly porous gelatin-siloxane (GLA-S) hybrid scaffolds with biomimetic anisotropic porous structure, physiochemical properties, mechanical behaviors and biological functions by treating gelatin-siloxane hybrid gels in an ammonium hydroxide solution. The siloxane used as an inorganic phase could effectively crosslink the gelatin polymer, which allowed for the unidirectional enlargement of ammonia vacuoles during ammonium hydroxide treatment. This created aligned pores in an axial direction when the siloxane contents (10 and 20 wt %) were high. In addition, the gelatin polymer could be uniformly hybridized with the siloxane phase at the molecular level, while intense interaction between these two phases could be achieved. This resulted in a significant increase in mechanical properties. The GLA-S hybrid scaffold with a siloxane content of 10 wt % showed reasonably high compressive yield strength of 4.2 ± 0.1 MPa and compressive modulus of 84 ± 5 MPa at a porosity of 86 vol %, which would be comparable to those of natural cancellous bone. In addition, the GLA-S hybrid scaffold had good biocompatibility assessed by in vitro cell tests using pre-osteoblast MC3T3-E1 cells.


Journal of Biomedical Materials Research Part A | 2013

Use of a poly(ether imide) coating to improve corrosion resistance and biocompatibility of magnesium (Mg) implant for orthopedic applications

Sang Bok Kim; Ji Hoon Jo; Sung Mi Lee; Hyoun Ee Kim; Kwan Ha Shin; Young Hag Koh

This study investigated the utility of poly(ether imide) (PEI) coating for improving the corrosion resistance and biocompatibility of magnesium (Mg) implants for orthopedic application. In particular, the microstructure of the PEI coating layers was controlled by the adjustment of the temperature used to dry the spin-coated wet PEI films. When a wet PEI film was dried at 4°C, a relatively thick and porous coating layer was achieved as a result of an extensive exchange of the solvent with water in a moist environment. In contrast, when a wet PEI film was dried at 70°C, a relatively thin and dense layer was created due to the faster evaporation of the solvent with a negligible exchange of the solvent with water. The porous PEI coating layer showed higher stability than did the dense one when immersed in a simulated body fluid (SBF), which was presumably attributed to the formation of chemical bonding between the PEI and the Mg substrate. Both the porous and the dense PEI coated Mg specimens showed significantly improved in vitro biocompatibility, which were assessed in terms of cell attachment, proliferation and differentiation. However, interestingly, the dense PEI coating layer showed greater cell proliferation and differentiation than did the porous layer. .


Journal of Nanomaterials | 2013

Synthesis and characterization of drug-loaded poly(ε-caprolactone)/silica hybrid nanofibrous scaffolds

Kwan Ha Shin; Young Hag Koh; Hyoun Ee Kim

We produced drug-loaded poly(e-caprolactone) (PCL)/silica hybrid nanofibrous scaffolds with various silica sol contents (0 vol%, 10 vol%, 15 vol%, and 20 vol%) using electrospinning and examined their physicochemical properties, mechanical properties, drug release behavior, and in vitro biocompatibility to evaluate their potential application for guided bone regeneration (GBR). The loading efficiency of tetracycline hydrochloride (TCH) drug was remarkably enhanced by hybridizing the PCL solution with the silica sol. All produced hybrid scaffolds had a highly nanofibrous structure, inwhich the silica phasewas homogeneously hybridized with the PCL polymer, while preserving their intrinsic characteristics. This led to considerable increases in hydrophilicity and mechanical properties (e.g., ultimate tensile strength and elastic modulus). In addition, the release rate and cumulative maximum amounts of the TCH from the hybrid scaffolds significantly increased with increasing the silica content, while all produced hybrid nanofibrous scaffolds showed good biocompatibility assessed by in vitro cell tests.


Materials | 2017

Production of Poly(ε-Caprolactone)/Hydroxyapatite Composite Scaffolds with a Tailored Macro/Micro-Porous Structure, High Mechanical Properties, and Excellent Bioactivity

Jong Woo Kim; Kwan Ha Shin; Young Hag Koh; Min Jin Hah; Jiyoung Moon; Hyoun Ee Kim

We produced poro-us poly(ε-caprolactone) (PCL)/hydroxyapatite (HA) composite scaffolds for bone regeneration, which can have a tailored macro/micro-porous structure with high mechanical properties and excellent in vitro bioactivity using non-solvent-induced phase separation (NIPS)-based 3D plotting. This innovative 3D plotting technique can create highly microporous PCL/HA composite filaments by inducing unique phase separation in PCL/HA solutions through the non-solvent-solvent exchange phenomenon. The PCL/HA composite scaffolds produced with various HA contents (0 wt %, 10 wt %, 15 wt %, and 20 wt %) showed that PCL/HA composite struts with highly microporous structures were well constructed in a controlled periodic pattern. Similar levels of overall porosity (~78 vol %) and pore size (~248 µm) were observed for all the PCL/HA composite scaffolds, which would be highly beneficial to bone tissue regeneration. Mechanical properties, such as ultimate tensile strength and compressive yield strength, increased with an increase in HA content. In addition, incorporating bioactive HA particles into the PCL polymer led to remarkable enhancements in in vitro apatite-forming ability.


Biomaterials Research | 2015

Production of porous Calcium Phosphate (CaP) ceramics with aligned pores using ceramic/camphene-based co-extrusion

Won Young Choi; Hyoun Ee Kim; Young Wook Moon; Kwan Ha Shin; Young Hag Koh

BackgroundCalcium phosphate (CaP) ceramics are one of the most valuable biomaterials for uses as the bone scaffold owing to their outstanding biocompatability, bioactivity, and biodegradation nature. In particular, these materials with an open porous structure can stimulate bone ingrowth into their 3-dimensionally interconnected pores. However, the creation of pores in bulk materials would inevitably cause a severe reduction in mechanical properties. Thus, it is a challenge to explore new ways of improving the mechanical properties of porous CaP scaffolds without scarifying their high porosity.ResultsPorous CaP ceramic scaffolds with aligned pores were successfully produced using ceramic/camphene-based co-extrusion. This aligned porous structure allowed for the achievement of high compressive strength when tested parallel to the direction of aligned pores. In addition, the overall porosity and mechanical properties of the aligned porous CaP ceramic scaffolds could be tailored simply by adjusting the initial CaP content in the CaP/camphene slurry. The porous CaP scaffolds showed excellent in vitro biocompatibility, suggesting their potential as the bone scaffold.ConclusionsAligned porous CaP ceramic scaffolds with considerably enhanced mechanical properties and tailorable porosity would find very useful applications as the bone scaffold.


Materials Letters | 2009

Compressive strength and processing of camphene-based freeze cast calcium phosphate scaffolds with aligned pores

Young Mi Soon; Kwan Ha Shin; Young Hag Koh; Jong Hoon Lee; Hyoun Ee Kim

Collaboration


Dive into the Kwan Ha Shin's collaboration.

Top Co-Authors

Avatar

Hyoun Ee Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Won Young Choi

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jong Hoon Lee

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Bo Lei

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hyun Do Jung

Seoul National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge