Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kwang Woon Kim is active.

Publication


Featured researches published by Kwang Woon Kim.


Cancer Research | 2006

Inhibition of mammalian target of rapamycin or apoptotic pathway induces autophagy and radiosensitizes PTEN null prostate cancer cells

Carolyn Cao; Ty K. Subhawong; Jeffrey M. Albert; Kwang Woon Kim; Ling Geng; Konjeti R. Sekhar; Young Jin Gi; Bo Lu

The phosphatidylinositol 3-kinase/Akt pathway plays a critical role in oncogenesis, and dysregulation of this pathway through loss of PTEN suppression is a particularly common phenomenon in aggressive prostate cancers. The mammalian target of rapamycin (mTOR) is a downstream signaling kinase in this pathway, exerting prosurvival influence on cells through the activation of factors involved in protein synthesis. The mTOR inhibitor rapamycin and its derivatives are cytotoxic to a number of cell lines. Recently, mTOR inhibition has also been shown to radiosensitize endothelial and breast cancer cells in vitro. Because radiation is an important modality in the treatment of prostate cancer, we tested the ability of the mTOR inhibitor RAD001 (everolimus) to enhance the cytotoxic effects of radiation on two prostate cancer cell lines, PC-3 and DU145. We found that both cell lines became more vulnerable to irradiation after treatment with RAD001, with the PTEN-deficient PC-3 cell line showing the greater sensitivity. This increased susceptibility to radiation is associated with induction of autophagy. Furthermore, we show that blocking apoptosis with caspase inhibition and Bax/Bak small interfering RNA in these cell lines enhances radiation-induced mortality and induces autophagy. Together, these data highlight the emerging importance of mTOR as a molecular target for therapeutic intervention, and lend support to the idea that nonapoptotic modes of cell death may play a crucial role in improving tumor cell kill.


Clinical Cancer Research | 2007

Inhibition of Poly(ADP-Ribose) Polymerase Enhances Cell Death and Improves Tumor Growth Delay in Irradiated Lung Cancer Models

Jeffrey M. Albert; Carolyn Cao; Kwang Woon Kim; Christopher D. Willey; Ling Geng; Dakai Xiao; Hong Wang; Alan Sandler; David H. Johnson; Alexander D. Colevas; Jennifer A. Low; Mace L. Rothenberg; Bo Lu

Purpose: Poly(ADP-ribose) polymerase-1 (PARP-1) is the founding member of a family of enzymes that catalyze the addition of ADP-ribose units to proteins that mediate DNA repair pathways. Ionizing radiation induces DNA strand breaks, suggesting that PARP-1 inhibition may sensitize tumor cells to radiation. Experimental Design: We investigated the combination of PARP-1 inhibition with radiation in lung cancer models. ABT-888, a novel potent PARP-1 inhibitor, was used to explore the effects of PARP-1 inhibition on irradiated tumors and tumor vasculature. Results: ABT-888 reduced clonogenic survival in H460 lung cancer cells, and inhibited DNA repair as shown by enhanced expression of DNA strand break marker histone γ-H2AX. Both apoptosis and autophagy contributed to the mechanism of increased cell death. Additionally, ABT-888 increased tumor growth delay at well-tolerated doses in murine models. For a 5-fold increase in tumor volume, tumor growth delay was 1 day for ABT-888 alone, 7 days for radiation alone, and 13.5 days for combination treatment. Immunohistochemical staining of tumor sections revealed an increase in terminal deoxyribonucleotide transferase–mediated nick-end labeling apoptotic staining, and a decrease in Ki-67 proliferative staining after combination treatment. Matrigel assay showed a decrease in in vitro endothelial tubule formation with ABT-888/radiation combination treatment, and von Willebrand factor staining of tumor sections revealed decreased vessel formation in vivo, suggesting that this strategy may also target tumor angiogenesis. Conclusions: We conclude that PARP-1 inhibition shows promise as an effective means of enhancing tumor sensitivity to radiation, and future clinical studies are needed to determine the potential of ABT-888 as a radiation enhancer.


Journal of Biological Chemistry | 2006

Autophagy for Cancer Therapy through Inhibition of Pro-apoptotic Proteins and Mammalian Target of Rapamycin Signaling

Kwang Woon Kim; Robert W. Mutter; Carolyn Cao; Jeffrey M. Albert; Dennis E. Hallahan; Bo Lu

Autophagy is an alternative cell death pathway that is induced by mammalian target of rapamycin (mTOR) inhibitors and up-regulated when apoptosis is defective. We investigated radiation-induced autophagy in the presence or absence of Bax/Bak with or without an mTOR inhibitor, Rad001. Two isogenic cell lines, wild type (WT) and Bak/Bak-/- mouse embryonic fibroblasts and tumor cell lines were used for this study. Irradiated Bak/Bak-/- cells had a decrease of Akt/mTOR signaling and a significant increase of pro-autophagic proteins ATG5-ATG12 COMPLEX and Beclin-1. These molecular events resulted in an up-regulation of autophagy. Bax/Bak-/- cells were defective in undergoing apoptosis but were more radiosensitive than the WT cells in autophagy. Both autophagy and sensitization of Bak/Bax-/- cells were further enhanced in the presence of Rad001. In contrast, inhibitors of autophagy rendered the Bak/Bax-/- cells radioresistant, whereas overexpression of ATG5 and Beclin-1 made the WT cells radiosensitive. When this novel concept of radiosensitization was tested in cancer models, small interfering RNAs against Bak/Bax also led to increased autophagy and sensitization of human breast and lung cancer cells to gamma radiation, which was further enhanced by Rad001. This is the first report to demonstrate that inhibition of pro-apoptotic proteins and induction of autophagy sensitizes cancer cells to therapy. Therapeutically targeting this novel pathway may yield significant benefits for cancer patients.


Molecular and Cellular Biology | 2003

Protein Phosphatase 2A Dephosphorylation of Phosphoserine 112 Plays the Gatekeeper Role for BAD-Mediated Apoptosis

Chi Wu Chiang; Cindy Kanies; Kwang Woon Kim; Wei Bin Fang; Christina Parkhurst; Minhui Xie; Travis S. Henry; Elizabeth Yang

ABSTRACT BAD, a proapoptotic molecule of the BCL2 family, is regulated by reversible phosphorylation. During survival, BAD is sequestered by 14-3-3 through serine 136 phosphorylation and is dissociated from BCL-XL through serine 155 phosphorylation. We report that phosphoserine 112 (pSer112) dephosphorylation functions as a gatekeeper for BAD-mediated apoptosis. During apoptosis, dephosphorylation of pSer112 preceded pSer136 dephosphorylation. Dephosphorylation of pSer112 accelerated dephosphorylation of pSer136, and inhibition of pSer112 dephosphorylation prevented pSer136 dephosphorylation, indicating that dephosphorylation of pSer112 is required for dephosphorylation of pSer136. Protein phosphatase 2A (PP2A) is the major pSer112 phosphatase. PP2A competed with 14-3-3 for BAD binding, and survival factor withdrawal enhanced PP2A association with BAD. Dephosphorylation of the critical residue, pSer136, could only be blocked by inhibition of all known subfamilies of serine/threonine phosphatases, suggesting that multiple phosphatases are involved in pSer136 dephosphorylation. Inhibition of PP2A rescued FL5.12 cells from apoptosis, demonstrating a physiologic role for PP2A-mediated pSer112 dephosphorylation. Thus, PP2A dephosphorylation of pSer112 is the key initiating event regulating the activation of BAD during interleukin-3 withdrawal-induced apoptosis.


Molecular Cancer Therapeutics | 2006

Targeting the Akt/mammalian target of rapamycin pathway for radiosensitization of breast cancer.

Jeffrey M. Albert; Kwang Woon Kim; Carolyn Cao; Bo Lu

The phosphatidylinositol 3-kinase (PI3K)/Akt pathway is known to be activated by radiation. The mammalian target of rapamycin (mTOR) is downstream of Akt, and we investigated the effects of radiation on Akt/mTOR signaling in breast cancer cell models. RAD001 (everolimus), a potent derivative of the mTOR inhibitor rapamycin, was used to study the effects of mTOR inhibition, as the role of mTOR inhibition in enhancing radiation remains unexplored. RAD001 decreased clonogenic cell survival in both breast cancer cell lines MDA-MB-231 and MCF-7, although the effect is greater in MDA-MB-231 cells. Irradiation induced Akt and mTOR signaling, and this signaling is attenuated by RAD001. The radiation-induced signaling activation is mediated by PI3K because inhibition of PI3K with LY294002 inhibited the increase in downstream mTOR signaling. Additionally, caspase-dependent apoptosis is an important mechanism of cell death when RAD001 is combined with 3 Gy radiation, as shown by induction of caspase-3 cleavage. An increase in G2-M cell cycle arrest was seen in the combination treatment group when compared with controls, suggesting that cell cycle arrest may have been a contributing factor in the increased radiosensitization seen in this study. We conclude that RAD001 attenuates radiation-induced prosurvival Akt/mTOR signaling and enhances the cytotoxic effects of radiation in breast cancer cell models, showing promise as a method of radiosensitization of breast cancer. [Mol Cancer Ther 2006;5(5):1183–9]


Autophagy | 2008

Autophagy upregulation by inhibitors of caspase-3 and mTOR enhances radiotherapy in a mouse model of lung cancer

Kwang Woon Kim; Misun Hwang; Luigi Moretti; Jerry J. Jaboin; Yong I. Cha; Bo Lu

Autophagy has been reported to be increased in irradiated cancer cells resistant to various apoptotic stimuli. We therefore hypothesized that induction of autophagy via mTOR inhibition enhances radiosensitization in apoptosis-inhibited H460 lung cancer cells in vitro and in a lung cancer xenograft model. To test this hypothesis, combinations of Z-DEVD (caspase-3 inhibitor), RAD001 (mTOR inhibitor) and irradiation were tested in cell and mouse models. The combination of Z-DEVD and RAD001 more potently radiosensitized H460 cells than individual treatment alone. The enhancement in radiation response was not only evident in clonogenic survival assays, but also was demonstrated through markedly reduced tumor growth, cellular proliferation (Ki67 staining), apoptosis (TUNEL staining), and angiogenesis (vWF staining) in vivo. Additionally, upregulation of autophagy as measured by increased GFP-LC3-tagged autophagosome formation accompanied the noted radiosensitization in vitro and in vivo. The greatest induction of autophagy and associated radiation toxicity was exhibited in the tri-modality treatment group. Autophagy marker, LC-3-II, was reduced by 3-methyladenine (3-MA), a known inhibitor of autophagy, but further increased by the addition of lysosomal protease inhibitors (pepstatin A and E64d), demonstrating that there is autophagic induction through type III PI3 kinase during the combined therapy. Knocking down of ATG5 and beclin-1, two essential autophagic molecules, resulted in radiation resistance of lung cancer cells. Our report suggests that combined inhibition of apoptosis and mTOR during radiotherapy is a potential therapeutic strategy to enhance radiation therapy in patients with non-small cell lung cancer.


Leukemia Research | 2000

The inhibition of ERK/MAPK not the activation of JNK/SAPK is primarily required to induce apoptosis in chronic myelogenous leukemic K562 cells

Chi-Dug Kang; Seok-Dong Yoo; Byung-Wook Hwang; Kwang Woon Kim; Dong-Wan Kim; Cheol-Min Kim; Sun-Hee Kim; Byung-Seon Chung

In this study, the downstream signaling of Bcr-Abl tyrosine kinase responsible for apoptosis resistance was investigated. DNA fragmentation, a hallmark of apoptosis, was observed after 2 days of herbimycin A treatment with a peak on 3 day. During the apoptosis induced by the treatment of herbimycin A, stress-activated protein kinase (SAPK) and p38 kinase were activated time- and dose-dependently, while extracellular signal-regulated kinase (ERK) was inhibited. However, apoptosis was induced by the treatment of PD98059, a specific inhibitor of MEK (MAPK or ERK kinase), not by the treatment of sorbitol, a strong activator of SAPK and p38 kinase. Although K562 cells were very resistant to sorbitol-induced apoptosis, DNA fragmentation was induced rapidly in Jurkat, HL-60 and U937 cells after exposure to sorbitol, despite that these apoptosis-sensitive cells have similar or lower activities of JNK/SAPK and p38 kinase compared with K562 cells after treatment of sorbitol. K562 cells had a much higher basal activity of ERK/MAPK than other apoptosis-sensitive cell lines, which were very susceptible to apoptosis induced by low dose of PD98059 compared with K562 cells. In HL-60 cells, sorbitol-induced apoptosis was prevented by the treatment of phorbol myristate 13-acetate (PMA), which activates the ERK/MAPK pathway, and this was blocked by PD98059. From these results, it could be suggested that the inhibition of ERK/MAPK not the activation of JNK/SAPK is primarily required to induce apoptosis in K562 cells.


Clinical Cancer Research | 2009

Combined Bcl-2/Mammalian Target of Rapamycin Inhibition Leads to Enhanced Radiosensitization via Induction of Apoptosis and Autophagy in Non-Small Cell Lung Tumor Xenograft Model

Kwang Woon Kim; Luigi Moretti; Lauren R. Mitchell; Dae Kwang Jung; Bo Lu

Purpose: Radiotherapy has a central role in the treatment of non–small cell lung cancer. Effectiveness of this modality, however, is often limited as resistance results from defects in cell death. Experimental Design: We investigated whether simultaneous up-regulation of apoptosis, via Bcl-2 inhibitor ABT-737, and autophagy, via mammalian target of rapamycin inhibitor rapamycin, can be used to enhance radiosensitivity of H460 cells in vitro and growth delay in a xenograft model. Results: In vitro studies confirmed that ABT-737 and rapamycin induce apoptosis and autophagy, respectively. ABT-737 induced cleaved caspase-3, a marker of apoptosis, and rapamycin correlated with an increase in punctate localization of green fluorescent protein-LC3, characteristic of autophagy. The combination ABT-737/rapamycin markedly enhanced sensitivity of H460 cells to radiation (dose enhancement ratio = 2.47; P = 0.002) in clonogenic assay. In addition, the combination ABT-737/rapamycin/radiation showed a dramatic tumor growth delay in a mouse xenograft model. In vivo immunohistochemistry staining showed that combination therapy yielded over a 100% increase in caspase-3 activity (apoptosis) and a 6-fold decrease in p62 protein level (indicative of autophagic flux) compared with radiation alone control group. Moreover, cell proliferation (Ki-67 staining) was reduced by 77% (P = 0.001) and vascular density (von Willebrand factor staining) by 67.5% (P = 0.09) compared with radiation alone. Additional in vitro studies in human umbilical vein endothelial cells indicated that combined therapy also significantly decreases tubule formation. Conclusion: These results suggest that concurrent induction of apoptosis and autophagy enhances radiation therapy both in vitro and in lung cancer xenograft models. Further investigations are warranted to assess the clinical potential of such strategy in lung cancer patients. (Clin Cancer Res 2009;15(19):6096–105)


Oncogene | 2010

Endoplasmic reticulum stress mediates radiation-induced autophagy by perk-eIF2α in caspase-3/7-deficient cells

Kwang Woon Kim; Luigi Moretti; Lauren R. Mitchell; Dae Kwang Jung; Bo Lu

As apoptosis defects limit efficacy of anticancer agents, autophagy has been proposed as a novel strategy for radiotherapy enhancement. We previously showed that caspase-3/7 inhibition induces autophagy and promotes radiosensitivity in vitro and in vivo. Therefore, we further investigated the mechanism by which radiation triggers autophagy in caspase-3/7-deficient cells, and found the involvement of endoplasmic reticulum (ER) stress. The ER activates a survival pathway, the unfolded protein response, which involves ER-localized transmembrane proteins such as protein kinase-like ER kinase (PERK), inositol-requiring enzyme-1 and activating transcription factor-6. In this study, we found that PERK is essential for radiation-induced autophagy and radiosensitivity in caspase-3/7 double-knockout cells. Irradiation of these cells increased expression of phosphorylated-eIF2α. Similar results were seen after administration of tunicamycin (TM), a well-known ER stressor. Importantly, we found that the administration of TM with radiation in MCF-7 breast cancer cells, which are lacking functional caspase-3 and relatively resistant to many anticancer agents, enhances radiation sensitivity. Our findings reveal ER stress as a novel potential mechanism of radiation-induced autophagy in caspase-3/7-deficient cells and as a potential strategy to maximize efficiency of radiation therapy in breast cancer.


International Journal of Cancer | 2004

Direct injection of immature dendritic cells into irradiated tumor induces efficient antitumor immunity

Kwang Woon Kim; Sun-Hee Kim; Jin-Gue Shin; Gui-Sook Kim; Young-Ok Son; Soon-Won Park; Dong Won Kim; Chang Hun Lee; Mee-Young Sol; Min-Ho Jeong; Byung-Seon Chung; Chi-Dug Kang

Although there are several ways to load tumor antigens to DCs, in vitro preparation of tumor antigens and manipulation of DCs are usually required. Therefore, to develop a simple antitumor immunization method, we examined if direct injection of DCs into tumor apoptosed by ionizing IR could induce efficient antitumor immunity. Ionizing IR with 15 Gy induced apoptosis in tumor maximally after 6 hr. Injection of DCs i.t. into IR tumor induced strong cytotoxicity of splenocytes against tumor cells compared to i.t. injection of DCs or ionizing IR of tumor, both of which induced weak cytotoxicity. In an animal study, i.t. injection of DCs into IR tumor induced therapeutic antitumor immunity against a tumor established at a distant site. Moreover, when TNF‐α or LPS was added as a danger/maturation signal to DC suspension before i.t. injection, antitumor immunity was significantly potentiated compared to a group treated with i.t. injection of DCs into IR tumor. Our results suggest that injection of DCs into tumor apoptosed by ionizing IR might be a simple and efficient method of immunization against tumor.

Collaboration


Dive into the Kwang Woon Kim's collaboration.

Top Co-Authors

Avatar

Bo Lu

Vanderbilt University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chi-Dug Kang

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Sun-Hee Kim

Samsung Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dai H. Chung

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jingbo Qiao

Vanderbilt University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge