Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kwang Youn Lee is active.

Publication


Featured researches published by Kwang Youn Lee.


Biochemical and Biophysical Research Communications | 2011

AMPK induces vascular smooth muscle cell senescence via LKB1 dependent pathway.

Jin Young Sung; Chang-Hoon Woo; Young Jin Kang; Kwang Youn Lee; Hyoung Chul Choi

Vascular cells have a limited lifespan with limited cell proliferation and undergo cellular senescence. The functional changes associated with cellular senescence are thought to contribute to age-related vascular disorders. AMP-activated protein kinase (AMPK) has been discussed in terms of beneficial or harmful effects for aging-related diseases. However, the detailed functional mechanisms of AMPK are largely unclear. An aging model was established by stimulating vascular smooth muscle cell (VSMC) with adriamycin. Adriamycin progressively increased the mRNA and protein expressions of AMPK. The phosphorylation levels of LKB1 and acetyl-CoA carboxylase (ACC), the upstream and downstream of AMPK, were dramatically increased by adriamycin stimulation. The expressions of p53 and p21, which contribute to vascular senescence, were also increased. Inhibition of AMPK diminished senescence-associated β-galactosidase (SA-β-gal) staining, and restored VSMC proliferation. Cytosolic translocation of LKB1 by adriamycin could be a mechanism for AMPK activation in senescence. Furthermore, p53 siRNA and p21 siRNA transfection attenuated adriamycin-induced SA-β-gal staining. These results suggest that LKB1 dependent AMPK activation elicits VSMC senescence and p53-p21 pathway is a mediator of LKB1/AMPK-induced senescence.


Biochemical and Biophysical Research Communications | 2008

NS-398, a selective COX-2 inhibitor, inhibits proliferation of IL-1β-stimulated vascular smooth muscle cells by induction of ΗΟ-1

Hyoung Chul Choi; Hee Sun Kim; Kwang Youn Lee; Ki Churl Chang; Young Jin Kang

We investigated whether NS-398, a selective inhibitor of COX-2, induces HO-1 in IL-1beta-stimulated vascular smooth muscle cells (VSMC). NS-398 reduced the production of PGE(2) without modulation of expression of COX-2 in IL-1beta-stimulated VSMC. NS-398 increased HO-1 mRNA and protein in a dose-dependent manner, but inhibited proliferation of IL-1beta-stimulated VSMC. Furthermore, SnPPIX, a HO-1 inhibitor, reversed the effects of NS-398 on PGE(2) production, suggesting that COX-2 activity can be affected by HO-1. Hemin, a HO-1 inducer, also reduced the production of PGE(2) and proliferation of IL-1beta-stimulated VSMC. CORM-2, a CO-releasing molecule, but not bilirubin inhibited proliferation of IL-1beta-stimulated VSMC. NS-398 inhibited proliferation of IL-1beta-stimulated VSMC in a HbO(2)-sensitive manner. In conclusion, NS-398 inhibits proliferation of IL-1beta-stimulated VSMC by HO-1-derived CO. Thus, NS-398 may facilitate the healing process of vessels in vascular inflammatory disorders such as atherosclerosis.


Archives of Pharmacal Research | 2009

Hemin inhibits hypertensive rat vascular smooth muscle cell proliferation through regulation of cyclin D and p21

Eun Mi Jeon; Hyoung Chul Choi; Kwang Youn Lee; Ki Churl Chang; Young Jin Kang

We tested the hypothesis that HO-1 (heme oxygenase-1) activity varied between vascular smooth muscle cells (VSMC) in spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats. HO-1 levels were measured under baseline and hemin-stimulated conditions and cell proliferation was monitored. Basal HO-1 levels in untreated cells were lower in SHR compared to WKY rats. Treatment with hemin increased HO-1 mRNA and protein levels in the cells obtained from WKY rats compared to that of SHR rats. However, hemin-treatment showed a greater inhibitory effect on VSMC proliferation in SHR rats than in WKY rats. Tin protoporphyrin IX (SnPPIX) showed a greater reversal of the anti-proliferative effect of hemin on cells from SHR rats than WKY. Similarly, VSMC proliferation from SHR was significantly inhibited in VSMC transfected with the HO-1 gene. These inhibitory effects were associated with cell cycle arrest in the G1 phase. The level of cyclin D, and cyclin dependent kinase inhibitor p21 was higher in SHR cells progressing through the G1 phase. Treatment of the cells with hemin down-regulated the expression of cyclin D and up-regulated that of p21. These results indicate that hemin, an HO-1 inducer, may play a more critical role in VSMC proliferation in SHR than WKY.


The Korean Journal of Physiology and Pharmacology | 2011

Cilostazol Inhibits Vascular Smooth Muscle Cell Proliferation and Reactive Oxygen Species Production through Activation of AMP-activated Protein Kinase Induced by Heme Oxygenase-1

Jung Eun Kim; Jin Young Sung; Chang Hoon Woo; Young Jin Kang; Kwang Youn Lee; Hee Sun Kim; Woo Hyung Kwun; Hyoung Chul Choi

Cilostazol is a selective inhibitor of phosphodiesterase 3 that increases intracellular cAMP levels and activates protein kinase A, thereby inhibiting vascular smooth muscle cell (VSMC) proliferation. We investigated whether AMP-activated protein kinase (AMPK) activation induced by heme oxygenase-1 (HO-1) is a mediator of the beneficial effects of cilostazol and whether cilostazol may prevent cell proliferation and reactive oxygen species (ROS) production by activating AMPK in VSMC. In the present study, we investigated VSMC with various concentrations of cilostazol. Treatment with cilostazol increased HO-1 expression and phosphorylation of AMPK in a dose- and time-dependent manner. Cilostazol also significantly decreased platelet-derived growth factor (PDGF)-induced VSMC proliferation and ROS production by activating AMPK induced by HO-1. Pharmacological and genetic inhibition of HO-1 and AMPK blocked the cilostazol-induced inhibition of cell proliferation and ROS production.These data suggest that cilostazol-induced HO-1 expression and AMPK activation might attenuate PDGF-induced VSMC proliferation and ROS production.


The Korean Journal of Physiology and Pharmacology | 2009

Heme oxygenase-1 induced by aprotinin inhibits vascular smooth muscle cell proliferation through cell cycle arrest in hypertensive rats.

Hyoung Chul Choi; Kwang Youn Lee; Dong Hyup Lee; Young Jin Kang

Spontaneous hypertensive rats (SHR) are an established model of genetic hypertension. Vascular smooth muscle cells (VSMC) from SHR proliferate faster than those of control rats (Wistar-Kyoto rats; WKY). We tested the hypothesis that induction of heme oxygenase (HO)-1 induced by aprotinin inhibits VSMC proliferation through cell cycle arrest in hypertensive rats. Aprotinin treatment inhibited VSMC proliferation in SHR more than in normotensive rats. These inhibitory effects were associated with cell cycle arrest in the G1 phase. Tin protoporphyrin IX (SnPPIX) reversed the anti-proliferative effect of aprotinin in VSMC from SHR. The level of cyclin D was higher in VSMC of SHR than those of WKY. Aprotinin treatment downregulated the cell cycle regulator, cyclin D, but upregulated the cyclin-dependent kinase inhibitor, p21, in VSMC of SHR. Aprotinin induced HO-1 in VSMC of SHR, but not in those of control rats. Furthermore, aprotinin-induced HO-1 inhibited VSMC proliferation of SHR. Consistently, VSMC proliferation in SHR was significantly inhibited by transfection with the HO-1 gene. These results indicate that induction of HO-1 by aprotinin inhibits VSMC proliferation through cell cycle arrest in hypertensive rats.


Cellular Signalling | 2000

Increase of [Ca2+]i and release of arachidonic acid via activation of M2 receptor coupled to Gi and Rho proteins in oesophageal muscle

Uy Dong Sohn; Yong Woo Hong; Hyoung Chul Choi; Jeoung Hee Ha; Kwang Youn Lee; Won Joon Kim; Piero Biancani; Ji Hoon Jeong; In Hoi Huh

We have previously shown that acetylcholine-induced contraction of oesophageal circular muscle depends on activation of phosphatidylcholine selective phospholipase C and D, which result in formation of diacylglycerol, and of phospholipase 2 which produces arachidonic acid. Diacylglycerol and arachidonic acid interact synergistically to activate protein kinase C. We have therefore investigated the relationship between cytosolic Ca(2+) and activation of phospholipase A(2) in response to acetylcholine-induced stimulation, by measuring the intracellular free Ca(2+) ([Ca(2+)]i), muscle tension, and [3H] arachidonic acid release. Acetylcholine-induced contraction was associated with increased [Ca(2+)]i and arachidonic acid release in a dose-dependent manner. In Ca(2+)-free medium, acetylcholine did not produce contraction, [Ca(2+)]i increase, and arachidonic acid release. In contrast, after depletion of Ca(2+) stores by thapsigargin (3 microM), acetylcholine caused a normal contraction, [Ca(2+)]i increase and arachidonic acid release. The increase in [Ca(2+)]i and arachidonic acid release were attenuated by the M2 receptor antagonist methoctramine, but not by the M3 receptor antagonist p-fluoro-hexahydro siladifenidol. Increase in [Ca(2+)]i and arachidonic acid release by acetylcholine were inhibited by pertussis toxin and C3 toxin. These findings indicate that contraction and arachidonic acid release are mediated through muscarinic M2 coupled to Gi or rho protein activation and Ca(2+) influx. Acetylcholine-induced contraction and the associated increase in [Ca(2+)]i and release of arachidonic acid were completely reduced by the combination treatment with a phospholipase A(2) inhibitor dimethyleicosadienoic acid and a phospholipase D inhibitor pCMB. They increased by the action of the inhibitor of diacylglycerol kinase R59949, whereas they decreased by a protein kinase C inhibitor chelerythrine. These data suggest that in oesophageal circular muscle acetylcholine-induced [Ca(2+)]i increase and arachidonic acid release are mediated through activation of M2 receptor coupled to Gi or rho protein, resulting in the activation of phospholipase A(2) and phospholipase D to activate protein kinase C.


The Korean Journal of Physiology and Pharmacology | 2009

Aprotinin Inhibits Vascular Smooth Muscle Cell Inflammation and Proliferation via Induction of HO-1

Dong Hyup Lee; Hyoung Chul Choi; Kwang Youn Lee; Young Jin Kang

Aprotinin is used clinically in cardiopulmonary bypass surgery to reduce transfusion requirements and the inflammatory response. The mechanism of action for the anti-inflammatory effects of aprotinin is still unclear. We examined our hypothesis whether inhibitory effects of aprotinin on cytokine-induced inducible nitric oxide synthase (iNOS) expression (IL-1beta plus TNF-alpha), reactive oxygen species (ROS) generation, and vascular smooth muscle cell (VSMC) proliferation were due to HO-1 induction in rat VSMCs. Aprotinin induced HO-1 protein expression in a dose-dependent manner, which was potentiated during inflammatory condition. Aprotinin reduced cytokine mixture (CM)-induced iNOS expression in a dose dependent manner. Furthermore, aprotinin reduced CM-induced ROS generation, cell proliferation, and phosphorylation of JNK but not of P38 and ERK1/2 kinases. Aprotinin effects were reversed by pre-treatment with the HO-1 inhibitor, tin protoporphyrin IX (SnPPIX). HO-1 is therefore closely involved in inflammatory-stimulated VSMC proliferation through the regulation of ROS generation and JNK phosphorylation. Our results suggest a new molecular basis for aprotinin anti-inflammatory properties.


The Korean Journal of Physiology and Pharmacology | 2008

Kinetic Changes of COX-2 Expression during Reperfusion Period after Ischemic Preconditioning Play a Role in Protection Against Ischemic Damage in Rat Brain

Young Jin Kang; Min Kyu Park; Hyun Suk Lee; Hyoung Chul Choi; Kwang Youn Lee; Hye Jung Kim; Han Geuk Seo; Jae Heun Lee; Ki Churl Chang

A brief ischemic insult induces significant protection against subsequent massive ischemic events. The molecular mechanisms known as preconditioning (PC)-induced ischemic tolerance are not completely understood. We investigated whether kinetic changes of cyclooxygenase (COX)-2 during reperfusion time-periods after PC were related to ischemic tolerance. Rats were given PC by occlusion of middle cerebral artery (MCAO) for 10 min and sacrificed after the indicated time-periods of reperfusion (1, 2, 4, 8, 12, 18 or 24 h). In PC-treated rats, focal ischemia was induced by occlusion of MCA for 24 h and brain infarct volume was then studied to determine whether different reperfusion time influenced the damage. We report that the most significant protection against focal ischemia was obtained in rats with 8 h reperfusion after PC. Administration of indomethacin (10 mg/kg, oral) or rofecoxib (5 mg/kg, oral) 48 h prior to PC counteracted the effect of PC. Immunohistochemical analysis showed that COX-2 and HO-1 protein were induced in PC-treated rat brain, which was significantly inhibited by rofecoxib. Taken together, we concluded that the kinetic changes of COX-2 expression during the reperfusion period after PC might be partly responsible for ischemic tolerance.


Yeungnam University Journal of Medicine | 1992

Effect of diazepam on the oxytocin induced contraction of the isolated rat uterus

Yoon Kee Park; Sung Ho Lee; Oh Cheol Kwon; Jeoung Hee Ha; Kwang Youn Lee; Won Joon Kim

This study was designed to investigate the effect of diazepam on the spontaneous contraction and oxytocin induced contraction of the isolated rat uterus. Female rat(Sprague-Dawley) pretreated with oophorectomy and 4 days administration of estrogen, weighing about 200 g, was sacrificed by cervical dislocation, and the uteruses were isolated. A longitudinal muscle strip was placed in temperature controlled() muscle chamber containing Lockes solution and myographied isometrically. Diazepam inhibited the spontaneous contraction and oxytocin induced contraction of the isolated rat uterus in a concentration-dependent manner. GABA, muscimol, a GABA A receptor agonist, bicuculline, a competitive GAGA A receptor antagonist, picrotoxin, a non competitive GABA A receptor antagonist, baclofen, a GABA B receptor agonist, and delta-aminovaleric acid, a GABA B receptor antagonist, did not affect on the spontaneous and oxytocin induced contraction of the isolated rat uterus. The inhibitory actions of diazepam on the spontaneous and oxytocin induced contraction were not affected by all the GABA receptor agonists and antagonists, but exceptionally potentiated by bicuculline. This potentiation-effect by bicuculline was not antagonized by muscimol. In normal calcium PSS, addition of calcium restored the spontaneous contraction preinhibited by diazepam and recovered the contractile of oxytocin preinhibited by diazepam. A23187, a calcium inophore, enhanced the restoration of both the spontaneous and oxytocin induced contraction by addition of calcium. In calcium-free PSS, diazepam suppressed the restoration of spontaneous motility by addition of calcium but allowed the recovery of spontaneous motility to a considerable extent. Diazepam could not inhibit some development of contractility by oxytocin in calcium-free PSS, but inhibited the increase in contractility by subsequent addition of calcium. These results suggest that the inhibitory action of diazepam on the rat uterine motility does not depend on or related to GABA receptors and that diazepam inhibits the extracellular calcium influx to suppress the spontaneous and oxytocin induced contractilities.


Biological & Pharmaceutical Bulletin | 2009

Isoproterenol Inhibits Angiotensin II-Stimulated Proliferation and Reactive Oxygen Species Production in Vascular Smooth Muscle Cells through Heme Oxygenase-1

Jung Eun Kim; Young Jin Kang; Kwang Youn Lee; Hyoung Chul Choi

Collaboration


Dive into the Kwang Youn Lee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ki Churl Chang

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Youngjin Kang

Kangwon National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge