Kwangwoo Park
Yonsei University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kwangwoo Park.
Radiation oncology journal | 2013
Ha Yoon Lee; Jee Suk Chang; Ik Jae Lee; Kwangwoo Park; Yong Bae Kim; Chang Ok Suh; Jun Won Kim; Ki Chang Keum
Purpose We explored whether the deep inspiration breath hold (DIBH) technique using Abches during left-sided breast irradiation was effective for minimizing the amount of radiation to the heart and lung compared to free breathing (FB). Materials and Methods Between February and July 2012, a total of 25 patients with left-sided breast cancer underwent two computed tomography scans each with the DIBH using Abches and using FB after breast-conserving surgery. The scans were retrospectively replanned using standardized criteria for the purpose of this study. The DIBH plans for each patient were compared with FB plans using dosimetric parameters. Results All patients were successfully treated with the DIBH technique using Abches. Significant differences were found between the DIBH and FB plans for mean heart dose (2.52 vs. 4.53 Gy), heart V30 (16.48 vs. 45.13 cm3), V20 (21.35 vs. 54.55 cm3), mean left anterior descending coronary artery (LAD) dose (16.01 vs. 26.26 Gy, all p < 0.001), and maximal dose to 0.2 cm3 of the LAD (41.65 vs. 47.27 Gy, p = 0.017). The mean left lung dose (7.53 vs. 8.03 Gy, p = 0.073) and lung V20 (14.63% vs. 15.72%, p = 0.060) of DIBH using Abches were not different significantly compared with FB. Conclusion We report that the use of a DIBH technique using Abches in breathing adapted radiotherapy for left-sided breast cancer is easily feasible in daily practice and significantly reduces the radiation doses to the heart and LAD, therefore potentially reducing cardiac risk.
Radiation Research | 2014
Zhen Yu Hong; Hae-June Lee; Won Hoon Choi; Yoon Jin Lee; Sung Ho Eun; Jung Il Lee; Kwangwoo Park; Ji Min Lee; Jaeho Cho
In a previous study, we established an image-guided small-animal micro-irradiation system mimicking clinical stereotactic body radiotherapy (SBRT). The goal of this study was to develop a rodent model of acute phase lung injury after ablative irradiation. A radiation dose of 90 Gy was focally delivered to the left lung of C57BL/6 mice using a small animal stereotactic irradiator. At days 1, 3, 5, 7, 9, 11 and 14 after irradiation, the lungs were perfused with formalin for fixation and paraffin sections were stained with hematoxylin and eosin (H&E) and Massons trichrome. At days 7 and 14 after irradiation, micro-computed tomography (CT) images of the lung were taken and lung functional measurements were performed with a flexiVent™ system. Gross morphological injury was evident 9 days after irradiation of normal lung tissues and dynamic sequential events occurring during the acute phase were validated by histopathological analysis. CT images of the mouse lungs indicated partial obstruction located in the peripheral area of the left lung. Significant alteration in inspiratory capacity and tissue damping were detected on day 14 after irradiation. An animal model of radiation-induced lung injury (RILI) in the acute phase reflecting clinical stereotactic body radiotherapy was established and validated with histopathological and functional analysis. This model enhances our understanding of the dynamic sequential events occurring in the acute phase of radiation-induced lung injury induced by ablative dose focal volume irradiation.
Radiation oncology journal | 2017
Jason Joon Bock Lee; Jinhyun Choi; Sung Gwe Ahn; Joon Jeong; Ik Jae Lee; Kwangwoo Park; Kangpyo Kim; Jun Won Kim
Purpose To report the results of a correlation analysis of skin dose assessed by in vivo dosimetry and the incidence of acute toxicity. This is a phase 2 trial evaluating the feasibility of intraoperative radiotherapy (IORT) as a boost for breast cancer patients. Materials and Methods Eligible patients were treated with IORT of 20 Gy followed by whole breast irradiation (WBI) of 46 Gy. A total of 55 patients with a minimum follow-up of 1 month after WBI were evaluated. Optically stimulated luminescence dosimeter (OSLD) detected radiation dose delivered to the skin during IORT. Acute toxicity was recorded according to the Common Terminology Criteria for Adverse Events v4.0. Clinical parameters were correlated with seroma formation and maximum skin dose. Results Median follow-up after IORT was 25.9 weeks (range, 12.7 to 50.3 weeks). Prior to WBI, only one patient developed acute toxicity. Following WBI, 30 patients experienced grade 1 skin toxicity and three patients had grade 2 skin toxicity. Skin dose during IORT exceeded 5 Gy in two patients: with grade 2 complications around the surgical scar in one patient who received 8.42 Gy. Breast volume on preoperative images (p = 0.001), ratio of applicator diameter and breast volume (p = 0.002), and distance between skin and tumor (p = 0.003) showed significant correlations with maximum skin dose. conclusions IORT as a boost was well-tolerated among Korean women without severe acute complication. In vivo dosimetry with OSLD can help ensure safe delivery of IORT as a boost.
Physics in Medicine and Biology | 2016
Kwangwoo Park; Jino Bak; Sungho Park; Wonhoon Choi; Suk Won Park
A semiempirical method based on the averaging effect of the sensitive volumes of different air-filled ionization chambers (ICs) was employed to approximate the correction factors for beam quality produced from the difference in the sizes of the reference field and small fields.We measured the output factors using several cylindrical ICs and calculated the correction factors using a mathematical method similar to deconvolution; in the method, we modeled the variable and inhomogeneous energy fluence function within the chamber cavity. The parameters of the modeled function and the correction factors were determined by solving a developed system of equations as well as on the basis of the measurement data and the geometry of the chambers. Further, Monte Carlo (MC) computations were performed using the Monaco® treatment planning system to validate the proposed method.The determined correction factors () were comparable to the values derived from the MC computations performed using Monaco®. For example, for a 6 MV photon beam and a field size of 1 × 1 cm2, was calculated to be for a PTW 31010 chamber and for a PTW 31016 chamber. On the other hand, the values determined from the MC computations were 1.121 and 1.031, respectively; the difference between the proposed method and the MC computation is less than 2%. In addition, we determined the values for PTW 30013, PTW 31010, PTW 31016, IBA FC23-C, and IBA CC13 chambers as well.We devised a method for determining from both the measurement of the output factors and model-based mathematical computation. The proposed method can be useful in case the MC simulation would not be applicable for the clinical settings.
Physica Medica | 2016
Kwangwoo Park; Wonhoon Choi; Ki Chang Keum; Ho Lee; Jeongmin Yoon; Chang Geol Lee; Ik Jae Lee; Jaeho Cho
Mechanical Quality Assurance (QA) is important to assure spatially precise delivery of external-beam radiation therapy. As an alternative to the conventional-film based method, we have developed a new tool for mechanical QA of LINACs which uses a light field rather than radiation. When light passes through the collimator, a shadow is projected onto a piece of translucent paper and the resulting image is captured by a digital camera via a mirror. With this method, we evaluated the position of the LINAC isocenter and the accuracy of the gantry, collimator, and couch rotation. We also evaluated the accuracy of the digital readouts of the gantry, collimator, and couch rotation. In addition, the treatment couch position indicator was tested. We performed camera calibration as an essential pre-requisite for quantitative measurements of the position of isocenter, the linear motion of the couch, and the rotation angles of the gantry and collimator. Camera calibration reduced the measurement error to submillimeter based on uncertainty in pixel size of the image, while, without calibration, the measurement error of up to 2 mm could occur for an object with a length of 5 cm.
Yonsei Medical Journal | 2014
Jihye Cha; Chang Ok Suh; Kwangwoo Park; Jong Hee Chang; Kyu Sung Lee; Se Hoon Kim; Jee Suk Chang; Joo Ho Kim; Yang Gun Suh; Jun Won Kim; Jaeho Cho
Purpose The aim of this study was to assess the feasibility and efficacy of hypofractionated simultaneous integrated boost-intensity modulated radiotherapy (SIB-IMRT) using three-layered planning target volumes (PTV) for malignant gliomas. Materials and Methods We conducted a retrospective analysis of 12 patients (WHO grade IV-10; III-2) postoperatively treated with SIB-IMRT with concurrent temozolomide. Three-layered PTVs were contoured based on gadolinium-enhanced magnetic resonance imaging as follows; high risk PTV (H-PTV) as the area of surgical bed including residual gross tumor with a 0.5 cm margin; low risk PTV (L-PTV) as the area surrounding the high risk PTV with 1.5 cm margin; moderate risk PTV (M-PTV) as a line at one-third the distance from high risk PTV to low risk PTV. Total dose to high risk PTV was 70 Gy in 8 and 62.5 Gy in 4 patients. Results The median follow-up time was 52 months in surviving patients. The 2- and 5-year overall survival (OS) rates were 66.6% and 47.6%, respectively. The 2- and 5-year progression-free survival (PFS) rates were 57.1% and 45.7%, respectively. The median OS and PFS were 48 and 31 months, respectively. Six patients (50%) progressed: in-field only in one, out-field or disseminated in 4, and both in one patient. All patients completed planned treatments without a toxicity-related gap. Asymptomatic radiation necrosis was observed in 4 patients at post-radiotherapy 9-31 months. Conclusion An escalated dose of hypofractionated SIB-IMRT using three-layered PTVs can be safely performed in patients with malignant glioma, and might contribute to better tumor control and survival.
Progress in Medical Physics | 2018
Eungman Lee; Kwangwoo Park; Jin Sung Kim; Yong Bae Kim; Ho Lee
Progress in Medical Physics | 2018
Jeongmin Yoon; Eungman Lee; Kwangwoo Park; Jin Sung Kim; Yong Bae Kim; Ho Lee
Progress in Medical Physics | 2018
Sohyun Park; Jinhyun Choi; Jinsung Kim; Sohyun Ahn; Min Joo Kim; Ho Lee; Seo Hee Choi; Kwangwoo Park
Progress in Medical Physics | 2018
Jeongmin Yoon; Kwangwoo Park; Jin Sung Kim; Yong Bae Kim; Ho Lee