Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kwangyul Lee is active.

Publication


Featured researches published by Kwangyul Lee.


Science of The Total Environment | 2014

Long-range transport of biomass burning emissions based on organic molecular markers and carbonaceous thermal distribution.

Min-Suk Bae; Ju-Seon Shin; Kwangyul Lee; Kwon Ho Lee; Young J. Kim

Semi-continuous organic carbon (OC), elemental carbon (EC), and organic molecular markers were analyzed using the thermal optical transmittance method at the Gosan supersite (on Jeju Island, Korea), which has been widely used as a regional background site for East Asia. The Carbonaceous Thermal Distribution (CTD) method, which can provide detailed carbon signature characteristics relative to analytical temperature, was used to improve the carbon fractionation of the analytical method. Ground-based measurements were conducted from October 25 to November 5, 2010. During the sampling period, one high OC concentration event and two characteristic periods were observed. Considering the thermal distribution patterns, the relationship between the EC and black carbon (BC) by optical measurements, the backward trajectories, the aerosol optical thickness, the PM10 concentrations from the 316 PM-network sites that were operated by the Ministry of Environment in Korea, and the organic molecular markers, such as levoglucosan, PAHs, and organic acids, we concluded that the event was influenced by long-range transport from biomass burning emissions. This study discusses the CTD analysis with organic molecular marker concentrations, extracts and interprets additional carbon fractions from a semi-continuous data set, and provides knowledge regarding the origin of carbon sources and their behaviors.


Journal of The Air & Waste Management Association | 2011

Time-resolved measurements of PM2.5 carbonaceous aerosols at Gosan, Korea.

Tsatsral Batmunkh; Yong-Hoon Kim; Kwangyul Lee; Mylene G. Cayetano; Jinsang Jung; Sang-Mook Kim; Kwan Chul Kim; Suk-Jo Lee; Jong-Choon Kim; Lim-Seok Chang; J.Y. An

ABSTRACT In order to better understand the characteristics of atmospheric carbonaceous aerosol at a background site in Northeast Asia, semicontinuous organic carbon (OC) and elemental carbon (EC), and time-resolved water-soluble organic carbon (WSOC) were measured by a Sunset OC/EC and a PILS-TOC (particle-into-liquid sampler coupled with an online total organic carbon) analyzer, respectively, at the Gosan supersite on Jeju Island, Korea, in the summer (May 28–June 17) and fall (August 24–September 30) of 2009. Hourly average OC concentration varied in the range of approximately 0.87–28.38 μgC m−3, with a mean of 4.07 ± 2.60 μgC m−3, while the hourly average EC concentration ranged approximately from 0.04 to 8.19 μgC m−3, with a mean of 1.35 ± 0.71 μgC m−3, from May 28 to June 17, 2009. During the fall season, OC varied in the approximate range 0.9–9.6 μgC m−3, with a mean of 2.30 ± 0.80 μgC m−3, whereas EC ranged approximately from 0.01 to 5.40 μgC m−3, with a mean of 0.66 ± 0.38 μgC m−3. Average contributions of EC to TC and WSOC to OC were 26.0% ± 9.7% and 20.6% ± 7.4%, and 37.6% ± 23.5% and 57.2% ± 22.2% during summer and fall seasons, respectively. As expected, clear diurnal variation of WSOC/OC was found in summer, varying from 0.22 during the nighttime up to 0.72 during the daytime, mainly due to the photo-oxidation process. In order to investigate the effect of air mass pathway on the characteristics of carbonaceous aerosol, 5-day back-trajectory analysis was conducted using the HYSPLIT model. The air mass pathways were classified into four types: Continental (CC), Marine (M), East Sea (ES) and Korean Peninsula (KP). The highest OC/EC ratio of 3.63 was observed when air mass originated from the Continental area (CC). The lowest OC/EC ratio of 0.79 was measured when air mass originated from the Marine area (M). A high OC concentration was occasionally observed at Gosan due to local biomass burning activities. The contribution of secondary OC to total OC varied approximately between 8.4% and 32.2% and depended on air mass type. IMPLICATIONS Organic material contributes approximately 20–90% of the total fine particulate mass concentration at different sites over the world depending on location and season. Organic carbon consists of hundreds of compounds with a wide range of chemical and optical properties. A better understanding of the chemical characteristics of carbonaceous aerosol influenced by increasing anthropogenic pollution in the downwind regions of the East Asian continent is needed in order to determine their impacts on regional air quality and climate change.


Journal of Geophysical Research | 2015

Optical and hygroscopic properties of long-range transported haze plumes observed at Deokjeok Island off the west coast of the Korean Peninsula under the Asian continental outflows

Jinsang Jung; Kwangyul Lee; Mylene G. Cayetano; Tsatsral Batmunkh; Young J. Kim

An intensive field campaign was conducted on Deokjeok Island off the west coast of the Korean Peninsula during spring 2009 to characterize the optical and hygroscopic properties of Asian continental outflows. A slightly high wavelength dependence of light absorption coefficient, α of 1.6 ± 0.05 (average ± 1· standard deviation), and a low humidity-dependent light scattering enhancement factor at 80% relative humidity, f(80%) (2.0 ± 0.2), were obtained when air masses originated from the northern part of China (N China), compared to those obtained when air masses originated from the eastern part of China (E China) (α = 1.4 ± 0.1; f(80%) = 2.4 ± 0.2). The relatively high α and low f(80%) during the N China compared to those during the E China were consistent with a relatively high mass ratio of organic aerosol to sum of SO42−, NO3−, and NH4+ during the N China (1.01 ± 0.17) compared to the E China episode (0.25 ± 0.13). This result indicates the importance of organic aerosol on aerosol optical and hygroscopic properties of haze plumes. Single scattering albedo (SSA) of dry particulate matter with a diameter less than or equal to 2.5 µm (PM2.5) (0.92 ± 0.01) and mass scattering efficiency (MSE) of dry PM2.5 at 550 nm wavelength during the E China episode (3.6 ± 0.3 m2 g−1) were higher than those previously obtained at the air mass source regions in China (SSA = ~0.8; MSE = ~3.0 m2 g−1), implying that optical properties of PM2.5 were significantly altered during long-range atmospheric transport.


Journal of The Air & Waste Management Association | 2015

Chemical characteristics of long-range-transported fine particulate matter at Gosan, Jeju Island, in the spring and fall of 2008, 2009, 2011, and 2012

Kwangyul Lee; Young J. Kim; Chang-Hee Kang; Jeongsoo Kim; Lim-Seok Chang; Kihong Park

Carbonaceous species (organic carbon [OC] and elemental carbon [EC]) and inorganic ions of particulate matter less than 2.5 μm (PM2.5) were measured to investigate the chemical characteristics of long-range-transported (LTP) PM2.5 at Gosan, Jeju Island, in Korea in the spring and fall of 2008–2012 (excluding 2010). On average, the non-sea-salt (nss) sulfate (4.2 µg/m3) was the most dominant species in the spring, followed by OC (2.6 µg/m3), nitrate (2.1 µg/m3), ammonium (1.7 µg/m3), and EC (0.6 µg/m3). In the fall, the nss-sulfate (4.7 µg/m3) was also the most dominant species, followed by OC (4.0 µg/m3), ammonium (1.7 µg/m3), nitrate (1.1 µg/m3), and EC (0.7 µg/m3). Both sulfate and OC were higher in the fall than in the spring, possibly due to more common northwest air masses (i.e., coming from China and Korea polluted areas) and more frequent biomass burnings in the fall. There was no clear difference in the EC between the spring and fall. The correlation between OC and EC was not strong; thus, the OC measured at Gosan was likely transported across a long distance and was not necessarily produced in a manner similar to the EC. Distinct types of LTP events (i.e., sulfate-dominant LTP versus OC-dominant LTP) were observed. In the sulfate-dominant LTP events, air masses directly arrived at Gosan without passing over the Korean Peninsula from the industrial area of China within 48 hr. During these events, the aerosol optical depth (AOD) increased to 1.63. Ionic balance data suggest that the long-range transported aerosols are acidic. In the OC-dominant LTP event, a higher residence time of air masses in Korea was observed (the air masses departing from the mainland of China arrived at the sampling site after passing Korea within 60–80 hr). Implications: In Northeast Asia, various natural and anthropogenic sources contribute to the complex chemical components and affect local/regional air quality and climate change. Chemical characteristics of long-range-transported (LTP) PM2.5 were investigated during spring and fall of 2008, 2009, 2011, and 2012. Based on air mass types, sulfate-dominant LTP and OC-dominant LTP were observed. A long-term variation and chemical characteristics of PM2.5 along with air mass and satellite data are required to better understand long-range-transported aerosols.


Journal of Hazardous Materials | 2016

Morphological and elemental properties of urban aerosols among PM events and different traffic systems

Shila Maskey; Hoseung Chae; Kwangyul Lee; Nguyen Phuoc Dan; Tran Tien Khoi; Kihong Park

Morphology and elemental composition of individual fine ambient particles varied among types of PM events and between two different urban environments having different major transportation systems (gasoline/diesel vehicles versus motorcycles). Carbonaceous particles were the most dominant in PM events, whereas S-rich particles were the highest in non-events at urban Gwangju in Korea. The aged soot, semi-volatile organic (SVO), and non-volatile organic (NVO) particles were more abundant in the polluted-long range transport (LTP) event than those in the dust-LTP event and non-event. In the dust-LTP event, the aged mineral dust particles outnumbered the fresh ones, suggesting the mineral dust particles were aged during their long-range transport. At HoChiMinh (HCM) in Vietnam, the fraction of carbonaceous particles was much higher than Gwangju (66% versus 30%) possibly due to more abundant two-stroke motor vehicles at HCM. Of the carbonaceous particles, combustion soot (19%) was the highest, followed by NVO (18%), SVO (17%), and biological particles (11%) at HCM, whereas SVO (11%) and NVO (10%) particles were the highest, followed by combustion soot particles (8%) at Gwangju. The higher fraction of mineral dust particles was also observed at HCM, indicating the sampling site was influenced by dust from unpaved roads and construction sites.


Journal of The Air & Waste Management Association | 2016

Optical and thermal characteristics of carbonaceous aerosols measured at an urban site in Gwangju, Korea, in the winter of 2011.

Tsatsral Batmunkh; Kwangyul Lee; Young J. Kim; Min-Suk Bae; Shila Maskey; Kihong Park

ABSTRACT Carbonaceous components (organic carbon [OC] and elemental carbon [EC]) and optical properties (light absorption and scattering) of fine particulate matter (aerodynamic diameter <2.5 μm; PM2.5) were simultaneously measured at an urban site in Gwangju, Korea, during the winter of 2011. OC was further classified into OC1, OC2, OC3, and OC4, based on a temperature protocol using a Sunset OC/EC analyzer. The average OC and EC concentrations were 5.0 ± 2.5 and 1.7 ± 0.9 μg C m−3, respectively. The average single-scattering albedo (SSA) at a wavelength of 550 nm was 0.58 ± 0.11, suggesting that the aerosols observed in the winter of 2011 had a local warming effect in this area. During the whole sampling period, “stagnant PM” and “long-range transport PM” events were identified. The light absorption coefficient (babs) was higher during the stagnant PM event than during the long-range transport PM event due to the existence of abundant light-absorbing OC during the stagnant PM event. In particular, the OC2 and OC3 concentrations were higher during the stagnant PM event than those during the long-range transport event, suggesting that OC2 and OC3 might be more related to the light-absorbing OC. The light scattering coefficient (bscat) was similar between the events. On average, the mass absorption efficiency attributed to EC (σEC) was 9.6 m2 g−1, whereas the efficiency attributed to OC (σOC) was 1.8 m2 g−1 at λ = 550 nm. Furthermore, the σEC is comparable among the PM event days, but the σOC for the stagnant PM event was significantly higher than that for the long-range transport PM event (1.7 vs. 0.5). Implications: Optical and thermal properties of carbonaceous aerosol were measured at Gwangju, and carbonaceous aerosol concentration and optical property varied between “stagnant PM” and “long-range transport PM” events. More abundant light absorbing OC was observed during the stagnant PM event.


Environmental Pollution | 2018

Oxidative potential of fine ambient particles in various environments

Lucille Joanna S. Borlaza; Enrique Mikhael R. Cosep; Seojong Kim; Kwangyul Lee; Hung-Soo Joo; Minhan Park; Daphne Bate; Mylene G. Cayetano; Kihong Park

The oxidative potential (OP) and chemical characteristics of fine particles collected from urban, roadside, rural, and industrial sites in Korea during spring, summer, fall, and winter seasons and an urban site in the Philippines during dry and wet seasons were examined. Significant differences in the OP of fine particles among sites and seasons were found. The industrial site yielded the highest OP activity (both mass and volume-normalized OP) among the sites, suggesting the strongest reactive oxygen species (ROS)-generating capability of industry source-dominant PM2.5. Seasonal data show that OP activities increased during the spring and summer possibly due to increased heavy metals caused by dust events and secondary organic aerosols formed by strong photochemical activity, respectively. The strength of the OP association with the chemical components highlights the influence of organic carbon and transition metals on the OP of ambient fine particles. The two OP assays (dithiothreitol (DTT) and electron spin resonance (ESR)) having different ROS-generating mechanisms were found to have different sensitivities to the chemical components facilitating a complementary analysis of the OP of ambient fine particles. Multiple linear regression model equations (OP as a function of chemical components) which were dependent on the sites were derived. A comparison of the daily OP and hazard index (HI) (the ratio of the measured mass concentration to the reference mass concentration of fine particles) suggests that the HI may not be sufficient to accurately estimate the health effects of fine particles, and a direct or indirect measurement of toxicity such as OP should be required in addition to the concentration level.


Marine Pollution Bulletin | 2016

Effect of phytoplankton biomass in seawater on chemical properties of sea spray aerosols.

Jiyeon Park; Do-Hyung Kim; Kwangyul Lee; Seunghee Han; Hyunji Kim; Leah R. Williams; Hung Soo Joo; Kihong Park

This study is to investigate the effect of biological seawater properties on sea spray aerosols (SSA). Concentrations of chlorophyll-a and bacteria were measured at coastal site in Korea in fall and summer seasons. Also, aerosol mass spectrometer (AMS) was used to determine chemical constituents (organics, sulfate, nitrate, ammonium, and chloride) of non-refractory submicrometer aerosols sprayed from seawaters using a bubble bursting system. The average concentration of chlorophyll-a in seawater in fall was 1.75±0.78μg/l, whereas it significantly increased to 5.11±2.16μg/l in summer. It was found that the fraction of organics in the submicrometer SSA was higher in summer (68%) than fall (49%), and that the organic fraction in the SSA increased as the concentration of chlorophyll-a increased in seawater, suggesting that the high phytoplankton biomass in seawater could lead to the enhancement of organic species in the SSA.


Atmospheric Chemistry and Physics | 2010

Spectral optical properties of long-range transport Asian dust and pollution aerosols over Northeast Asia in 2007 and 2008

Jinsang Jung; Yong-Ha Kim; Kwangyul Lee; Mylene G. Cayetano; Tsatsral Batmunkh; Ja-ho Koo; Jhoon Kim


Atmospheric Chemistry and Physics | 2013

Investigation of the diurnal pattern of the vertical distribution of pollen in the lower troposphere using LIDAR

Youngmin Noh; Hanlim Lee; D. Mueller; Kwangyul Lee; Dongho Shin; Sung-Kyun Shin; T. J. Choi; Y. J. Choi; Kwanchul Kim

Collaboration


Dive into the Kwangyul Lee's collaboration.

Top Co-Authors

Avatar

Kihong Park

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Min-Suk Bae

Mokpo National University

View shared research outputs
Top Co-Authors

Avatar

Tsatsral Batmunkh

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Mylene G. Cayetano

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Young J. Kim

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiyeon Park

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Youngmin Noh

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ju-Seon Shin

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Kwanchul Kim

Gwangju Institute of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge