Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kwon Moo Park is active.

Publication


Featured researches published by Kwon Moo Park.


Journal of Clinical Investigation | 2005

Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrow-derived stem cells

Jeremy S. Duffield; Kwon Moo Park; Li Li Hsiao; Vicki Rubin Kelley; David T. Scadden; Takaharu Ichimura; Joseph V. Bonventre

Ischemia causes kidney tubular cell damage and abnormal renal function. The kidney is capable of morphological restoration of tubules and recovery of function. Recently, it has been suggested that cells repopulating the ischemically injured tubule derive from bone marrow stem cells. We studied kidney repair in chimeric mice expressing GFP or bacterial beta-gal or harboring the male Y chromosome exclusively in bone marrow-derived cells. In GFP chimeras, some interstitial cells but not tubular cells expressed GFP after ischemic injury. More than 99% of those GFP interstitial cells were leukocytes. In female mice with male bone marrow, occasional tubular cells (0.06%) appeared to be positive for the Y chromosome, but deconvolution microscopy revealed these to be artifactual. In beta-gal chimeras, some tubular cells also appeared to express beta-gal as assessed by X-gal staining, but following suppression of endogenous (mammalian) beta-gal, no tubular cells could be found that stained with X-gal after ischemic injury. Whereas there was an absence of bone marrow-derived tubular cells, many tubular cells expressed proliferating cell nuclear antigen, which is reflective of a high proliferative rate of endogenous surviving tubular cells. Upon i.v. injection of bone marrow mesenchymal stromal cells, postischemic functional renal impairment was reduced, but there was no evidence of differentiation of these cells into tubular cells of the kidney. Thus, our data indicate that bone marrow-derived cells do not make a significant contribution to the restoration of epithelial integrity after an ischemic insult. It is likely that intrinsic tubular cell proliferation accounts for functionally significant replenishment of the tubular epithelium after ischemia.


Journal of Biological Chemistry | 2001

Prevention of Kidney Ischemia/Reperfusion-induced Functional Injury and JNK, p38, and MAPK Kinase Activation by Remote Ischemic Pretreatment

Kwon Moo Park; Ang Chen; Joseph V. Bonventre

MAPK activities, including JNK, p38, and ERK, are markedly enhanced after ischemia in vivoand chemical anoxia in vitro. The relative extent of JNK, p38, or ERK activation has been proposed to determine cell fate after injury. A mouse model was established in which prior exposure to ischemia protected against a second ischemic insult imposed 8 or 15 days later. In contrast to what was observed after 30 min of bilateral ischemia, when a second period of ischemia of 30- or 35-min duration was imposed 8 days later, there was no subsequent increase in plasma creatinine, decrease in glomerular filtration rate, or increase in fractional excretion of sodium. A shorter period of prior ischemia (15 min) was partially protective against subsequent ischemic injury 8 days later. Unilateral ischemia was also protective against a subsequent ischemic insult to the same kidney, revealing that systemic uremia is not necessary for protection. The ischemia-related activation of JNK and p38 and outer medullary vascular congestion were markedly mitigated by prior exposure to ischemia, whereas preconditioning had no effect on post-ischemic activation of ERK1/2. The phosphorylation of MKK7, MKK4, and MKK3/6, upstream activators of JNK and p38, was markedly reduced by ischemic preconditioning, whereas the post-ischemic phosphorylation of MEK1/2, the upstream activator of ERK1/2, was unaffected by preconditioning. Pre- and post-ischemic HSP-25 levels were much higher in the preconditioned kidney. In summary, post-ischemic JNK and p38 (but not ERK1/2) activation was markedly reduced in a model of kidney ischemic preconditioning that was established in the mouse. The reduction in JNK and p38 activation can be accounted for by reduced activation of upstream MAPK kinases. The post-ischemic activation patterns of MAPKs may explain the remarkable protection against ischemic injury observed in this model.


American Journal of Physiology-renal Physiology | 2009

Reactive oxygen species/oxidative stress contributes to progression of kidney fibrosis following transient ischemic injury in mice

Jinu Kim; Young Mi Seok; Kyong-Jin Jung; Kwon Moo Park

Recently, kidney fibrosis following transplantation has become recognized as a main contributor of chronic allograft nephropathy. In transplantation, transient ischemia is an inescapable event. Reactive oxygen species (ROS) play a critical role in ischemia and reperfusion (I/R)-induced acute kidney injury, as well as progression of fibrosis in various diseases such as hypertension, diabetes, and ureteral obstruction. However, a role of ROS/oxidative stress in chronic kidney fibrosis following I/R injury remains to be defined. In this study, we investigated the involvement of ROS/oxidative stress in kidney fibrosis following kidney I/R in mice. Mice were subjected to 30 min of bilateral kidney ischemia followed by reperfusion on day 0 and then administered with either manganese (III) tetrakis(1-methyl-4-pyridyl) porphyrin (MnTMPyP, 5 mg/kg body wt ip), a cell permeable superoxide dismutase (SOD) mimetic, or 0.9% saline (vehicle) beginning at 48 h after I/R for 14 days. I/R significantly increased interstitial extension, collagen deposition, apoptosis of tubular epithelial cells, nitrotyrosine expression, hydrogen peroxide production, and lipid peroxidation and decreased copper-zinc SOD, manganese SOD, and glucose 6-phosphate dehydrogenase activities in the kidneys 16 days after the procedure. MnTMPyP administration minimized these postischemic changes. In addition, MnTMPyP administration significantly attenuated the increases of alpha-smooth muscle actin, PCNA, S100A4, CD68, and heat shock protein 47 expression following I/R. We concluded that kidney fibrosis develops chronically following I/R injury, and this process is associated with the increase of ROS/oxidative stress.


Journal of Biological Chemistry | 2003

Characterization of a novel and specific inhibitor for the pro-apoptotic protease Omi/HtrA2.

Lucia Cilenti; Younghee Lee; Sibylle Hess; Srinivasa M. Srinivasula; Kwon Moo Park; Daniela Junqueira; Hedvika Davis; Joseph V. Bonventre; Emad S. Alnemri; Antonis S. Zervos

Omi/HtrA2 is a mammalian serine protease with high homology to bacterial HtrA chaperones. Omi/HtrA2 is localized in mitochondria and is released to the cytoplasm in response to apoptotic stimuli. Omi/HtrA2 induces cell death in a caspase-dependent manner by interacting with the inhibitor of apoptosis protein as well as in a caspase-independent manner that relies on its protease activity. We describe the identification and characterization of a novel compound as a specific inhibitor of the proteolytic activity of Omi/HtrA2. This compound (ucf-101) was isolated in a high throughput screening of a combinatorial library using bacterially made Omi-(134–458) protease and fluorescein-casein as a generic substrate. ucf-101 showed specific activity against Omi/HtrA2 and very little activity against various other serine proteases. This compound has a natural fluorescence that was used to monitor its ability to enter mammalian cells. ucf-101, when tested in caspase-9 (−/−) null fibroblasts, was found to inhibit Omi/HtrA2-induced cell death.


Journal of Biological Chemistry | 2006

Orchiectomy Attenuates Post-ischemic Oxidative Stress and Ischemia/Reperfusion Injury in Mice A ROLE FOR MANGANESE SUPEROXIDE DISMUTASE

Jinu Kim; In Sup Kil; Young Mi Seok; Eun Sun Yang; Dae Kyong Kim; Dong Gun Lim; Jeen-Woo Park; Joseph V. Bonventre; Kwon Moo Park

Males are much more susceptible to ischemia/reperfusion (I/R)-induced kidney injury when compared with females. Recently we reported that the presence of testosterone, rather than the absence of estrogen, plays a critical role in gender differences in kidney susceptibility to I/R injury in mice. Although reactive oxygen species and antioxidant defenses have been implicated in I/R injury, their roles remain to be defined. Here we report that the orchiectomized animal had significantly less lipid peroxidation and lower hydrogen peroxide levels in the kidney 4 and 24 h after 30 min of bilateral renal ischemia when compared with intact or dihydrotestosterone-treated orchiectomized males. The post-ischemic kidney expression and activity of manganese superoxide dismutase (MnSOD) in orchiectomized mice was much greater than in intact or dihydrotestosterone-administered orchiectomized mice. Four hours after 30 min of bilateral ischemia, superoxide formation was significantly lower in orchiectomized mice than in intact mice. In Madin-Darby canine kidney cells, a kidney epithelial cell line, 1 mm H2O2 decreased MnSOD activity, an effect that was potentiated by pretreatment with dihydrotestosterone. Orchiectomy prevented the post-ischemic decrease of catalase activity. Treatment of male mice with manganese(III) tetrakis(1-methyl-4-pyridyl)porphyrin (MnTMPyP), a SOD mimetic, reduced the post-ischemic increase of plasma creatinine, lipid peroxidation, and tissue hydrogen peroxide. These results suggest that orchiectomy accelerates the post-ischemic activation of MnSOD and reduces reactive oxygen species and lipid peroxidation, resulting in reduced kidney susceptibility to I/R injury.


Journal of The American Society of Nephrology | 2007

Erythropoietin Decreases Renal Fibrosis in Mice with Ureteral Obstruction: Role of Inhibiting TGF-β–Induced Epithelial-to-Mesenchymal Transition

Sun Hee Park; Min-Jeong Choi; In-Kyung Song; Soon-Youn Choi; Ju-Ock Nam; Chan-Duck Kim; Byung-Heon Lee; Rang-Woon Park; Kwon Moo Park; Yong-Jin Kim; In-San Kim; Tae-Hwan Kwon; Yong-Lim Kim

The inhibitory effects of recombinant human erythropoietin (rhEPO) were examined against (1) the progression of renal fibrosis in mice with complete unilateral ureteral obstruction and (2) the TGF-beta1-induced epithelial-to-mesenchymal transition (EMT) in MDCK cells. Unilateral ureteral obstruction was induced in BALB/c mice and rhEPO (100 or 1000 U/kg, intraperitoneally, every other day) or vehicle was administered from day 3 to day 14. Immunoblotting and immunohistochemistry revealed increased expressions of TGF-beta1, alpha-smooth muscle actin (alpha-SMA), and fibronectin and decreased expression of E-cadherin in the obstructed kidneys. In contrast, rhEPO treatment significantly attenuated the upregulation of TGF-beta1 and alpha-SMA and the downregulation of E-cadherin. MDCK cells were treated with TGF-beta1 (5 ng/ml) for 48 h to induce EMT, and the cells were then co-treated with TGF-beta1 and rhEPO for another 48 h. Increased expressions of alpha-SMA and vimentin and decreased expressions of zona occludens-1 and E-cadherin were observed after TGF-beta1 treatment, and these changes were markedly attenuated by rhEPO co-treatment. TGF-beta1 increased phosphorylated Smad-2 expression in MDCK cells, which was decreased by rhEPO co-treatment. In conclusion, rhEPO treatment inhibits the progression of renal fibrosis in obstructed kidney and attenuates the TGF-beta1-induced EMT. It is suggested that the renoprotective effects of rhEPO could be mediated, at least partly, by inhibition of TGF-beta1-induced EMT.


American Journal of Physiology-renal Physiology | 2010

Reactive oxygen species generated by renal ischemia and reperfusion trigger protection against subsequent renal ischemia and reperfusion injury in mice

Jinu Kim; Hee-Seong Jang; Kwon Moo Park

Ischemic preconditioning by a single event of ischemia and reperfusion (SIRPC) dramatically protects renal function against ischemia and reperfusion (I/R) induced several weeks later. We recently reported that reactive oxygen species (ROS) and oxidative stress were sustained in a kidney that had functionally recovered from I/R injury, thus suggesting an association between SIRPC and ROS and oxidative stress. However, the role of ROS in SIRPC remains to be clearly elucidated. To assess the involvement of ROS in SIRPC, mice were subjected to SIRPC (30 min of bilateral renal ischemia and 8 days of reperfusion) and then exposed to I/R injury. Thirty minutes of bilateral renal ischemia in the non-SIRPC mice resulted in a marked increase in plasma creatinine levels 4 and 24 h after reperfusion, which was not observed in the I/R in the SIRPC mice. SIRPC resulted in increases in the levels of kidney superoxide. Administrations of manganese(III) tetrakis(1-methyl-4-pyridyl) porphyrin [MnTMPyP; a cell-permeable superoxide dismutase (SOD) mimetic] and N-acetylcysteine (NAc; a ROS scavenger) to SIRPC mice blocked the SIRPC-induced increase in superoxide levels and removed approximately 48-64% of the functional protection of the SIRPC kidney. Additionally, these administrations significantly inhibited I/R-induced increases in superoxide formation, hydrogen peroxide production, and lipid peroxidation, along with the inhibition of I/R-induced reductions in the expression and activity of manganese SOD, copper-zinc SOD, and catalase. Furthermore, administrations of MnTMPyP or NAc inhibited the SIRPC-induced increase in inducible nitric oxide synthase expression but did not inhibit the SIRPC-induced increases in heat shock protein-25 expression. In conclusion, the renoprotection afforded by SIRPC was triggered by ROS generated by SIRPC.


Transplantation | 2008

Infiltrated macrophages contribute to recovery after ischemic injury but not to ischemic preconditioning in kidneys.

Hee-Seong Jang; Jinu Kim; Yong-Ki Park; Kwon Moo Park

Background. Macrophages are associated with ischemia/reperfusion (I/R) injury; however, the role of macrophages that have infiltrated into tissues remains unclear. Therefore, we investigated whether infiltrated macrophages influence recovery after kidney I/R injury and affect the phenomenon of ischemic preconditioning, in which previous ischemia affords the kidney resistance to subsequent ischemia. Methods. Mice were subjected to 30 min of bilateral renal ischemia on day 0, then intravenously administered either liposome-encapsulated dichloromethylene bisphosphonate (Cl2MBP; Lipo-clodronate, a remover of tissue macrophages) or PBS (Lipo-PBS) on day 6 and were then subjected to an additional 30 min of bilateral renal ischemia on day 8. Results. Administration of lipoclodronate removed the infiltrated macrophages after I/R. The number of apoptotic and necrotic cells, as well as superoxide and peroxynitrite levels in kidneys from mice that received Lipo-clodronate, was significantly greater than those in kidneys from mice that were administered Lipo-PBS. Proliferating cell nuclear antigen (PCNA) expression was greater in kidneys from mice that were treated with Lipo-clodronate than in those from mice treated with Lipo-PBS. Thirty min of ischemic preconditioning protected the kidneys from 30 min of ischemia induced 8 days later. There was no difference in the plasma creatinine levels of mice treated with Lipo-clodronate or Lipo-PBS. Conclusions. Our results demonstrated that the infiltrated macrophages removed dead and dying cells and accelerated recovery after ischemia/reperfusion injury but did not make a critical contribution to ischemic preconditioning.


PLOS Genetics | 2011

The exocyst protein Sec10 interacts with Polycystin-2 and knockdown causes PKD-phenotypes.

Ben Fogelgren; Shin-Yi Lin; Xiaofeng Zuo; Kimberly M. Jaffe; Kwon Moo Park; Ryan Reichert; P. Darwin Bell; Rebecca D. Burdine; Joshua H. Lipschutz

Autosomal dominant polycystic kidney disease (ADPKD) is characterized by formation of renal cysts that destroy the kidney. Mutations in PKD1 and PKD2, encoding polycystins-1 and -2, cause ADPKD. Polycystins are thought to function in primary cilia, but it is not well understood how these and other proteins are targeted to cilia. Here, we provide the first genetic and biochemical link between polycystins and the exocyst, a highly-conserved eight-protein membrane trafficking complex. We show that knockdown of exocyst component Sec10 yields cellular phenotypes associated with ADPKD, including loss of flow-generated calcium increases, hyperproliferation, and abnormal activation of MAPK. Sec10 knockdown in zebrafish phenocopies many aspects of polycystin-2 knockdown—including curly tail up, left-right patterning defects, glomerular expansion, and MAPK activation—suggesting that the exocyst is required for pkd2 function in vivo. We observe a synergistic genetic interaction between zebrafish sec10 and pkd2 for many of these cilia-related phenotypes. Importantly, we demonstrate a biochemical interaction between Sec10 and the ciliary proteins polycystin-2, IFT88, and IFT20 and co-localization of the exocyst and polycystin-2 at the primary cilium. Our work supports a model in which the exocyst is required for the ciliary localization of polycystin-2, thus allowing for polycystin-2 function in cellular processes.


International Immunopharmacology | 2010

Bisabolangelone isolated from Ostericum koreanum inhibits the production of inflammatory mediators by down-regulation of NF-κB and ERK MAP kinase activity in LPS-stimulated RAW264.7 cells

Hyo Won Jung; Ramalingam Mahesh; Jun Hong Park; Yong Chool Boo; Kwon Moo Park; Yong-Ki Park

Bisabolangelone, a sesquiterpene derivative, was isolated from the roots of Osterici Radix (Ostericum koreanum Maximowicz). In this study, the anti-inflammatory effect of bisabolangelone was investigated to address potential therapeutic effects in lipopolysaccharide (LPS)-stimulated mouse macrophage RAW 264.7 cells. Bisabolangelone significantly inhibited NO, PGE(2), and pro-inflammatory cytokines by suppressing the mRNA and protein expressions of iNOS and COX-2. Bisabolangelone also inhibited the productions of pro-inflammatory cytokines (TNF-alpha, IL-1beta and IL-6) by suppressing the cytokine mRNA and protein expressions. The molecular mechanism of bisabolangelone-mediated attenuation in RAW 264.7 cells has a close relationship to suppressing the translocation of nuclear factor-kappaB (NF-kappaB) p65 subunit into the nucleus and the phosphorylation of mitogen-activated protein kinases (MAPKs). These results indicate that bisabolangelone inhibits LPS-stimulated inflammation through the blocking of NF-kappaB and MAPK pathways in macrophages, and demonstrated that bisabolangelone possesses anti-inflammatory properties.

Collaboration


Dive into the Kwon Moo Park's collaboration.

Top Co-Authors

Avatar

Jee In Kim

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

Hee-Seong Jang

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

Jinu Kim

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

Joseph V. Bonventre

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Sang Jun Han

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

Kyong-Jin Jung

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

Mi Ra Noh

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar

Joshua H. Lipschutz

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Min Jung Kong

Kyungpook National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge