Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kwong Tai Cheng is active.

Publication


Featured researches published by Kwong Tai Cheng.


Journal of Biological Chemistry | 2007

Dynamic assembly of TRPC1-STIM1-Orai1 ternary complex is involved in store-operated calcium influx. Evidence for similarities in store-operated and calcium release-activated calcium channel components.

Hwei Ling Ong; Kwong Tai Cheng; Xibao Liu; Bidhan C. Bandyopadhyay; Biman C. Paria; Jonathan Soboloff; Biswaranjan Pani; Yousang Gwack; Sonal Srikanth; Brij B. Singh; Donald L. Gill; Indu S. Ambudkar

Store-operated calcium entry (SOCE) is a ubiquitous mechanism that is mediated by distinct SOC channels, ranging from the highly selective calcium release-activated Ca2+ (CRAC) channel in rat basophilic leukemia and other hematopoietic cells to relatively Ca2+-selective or non-selective SOC channels in other cells. Although the exact composition of these channels is not yet established, TRPC1 contributes to SOC channels and regulation of physiological function of a variety of cell types. Recently, Orai1 and STIM1 have been suggested to be sufficient for generating CRAC channels. Here we show that Orai1 and STIM1 are also required for TRPC1-SOC channels. Knockdown of TRPC1, Orai1, or STIM1 attenuated, whereas overexpression of TRPC1, but not Orai1 or STIM1, induced an increase in SOC entry and ISOC in human salivary gland cells. All three proteins were co-localized in the plasma membrane region of cells, and thapsigargin increased co-immunoprecipitation of TRPC1 with STIM1, and Orai1 in human salivary gland cells as well as dispersed mouse submandibular gland cells. In aggregate, the data presented here reveal that all three proteins are essential for generation of ISOC in these cells and that dynamic assembly of TRPC1-STIM1-Orai1 ternary complex is involved in activation of SOC channel in response to internal Ca2+ store depletion. Thus, these data suggest a common molecular basis for SOC and CRAC channels.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Attenuation of store-operated Ca2+ current impairs salivary gland fluid secretion in TRPC1(-/-) mice.

Xibao Liu; Kwong Tai Cheng; Bidhan C. Bandyopadhyay; Biswaranjan Pani; Alexander Dietrich; Biman C. Paria; William D. Swaim; David J. Beech; Eda Yildrim; Brij B. Singh; Lutz Birnbaumer; Indu S. Ambudkar

Agonist-induced Ca2+ entry via store-operated Ca2+ (SOC) channels is suggested to regulate a wide variety of cellular functions, including salivary gland fluid secretion. However, the molecular components of these channels and their physiological function(s) are largely unknown. Here we report that attenuation of SOC current underlies salivary gland dysfunction in mice lacking transient receptor potential 1 (TRPC1). Neurotransmitter-regulated salivary gland fluid secretion in TRPC1-deficient TRPC1(−/−) mice was severely decreased (by 70%). Further, agonist- and thapsigargin-stimulated SOC channel activity was significantly reduced in salivary gland acinar cells isolated from TRPC1(−/−) mice. Deletion of TRPC1 also eliminated sustained Ca2+-dependent potassium channel activity, which depends on Ca2+ entry and is required for fluid secretion. Expression of key proteins involved in fluid secretion and Ca2+ signaling, including STIM1 and other TRPC channels, was not altered. Together, these data demonstrate that reduced SOC entry accounts for the severe loss of salivary gland fluid secretion in TRPC1(−/−) mice. Thus, TRPC1 is a critical component of the SOC channel in salivary gland acinar cells and is essential for neurotransmitter-regulation of fluid secretion.


Journal of Biological Chemistry | 2008

Functional requirement for Orai1 in store-operated TRPC1-STIM1 channels.

Kwong Tai Cheng; Xibao Liu; Hwei Ling Ong; Indu S. Ambudkar

Orai1 and TRPC1 have been proposed as core components of store-operated calcium release-activated calcium (CRAC) and store-operated calcium (SOC) channels, respectively. STIM1, a Ca2+ sensor protein in the endoplasmic reticulum, interacts with and mediates store-dependent regulation of both channels. We have previously reported that dynamic association of Orai1, TRPC1, and STIM1 is involved in activation of store-operated Ca2+ entry (SOCE) in salivary gland cells. In this study, we have assessed the molecular basis of TRPC1-SOC channels in HEK293 cells. We report that TRPC1+STIM1-dependent SOCE requires functional Orai1. Thapsigargin stimulation of cells expressing Orai1+STIM1 increased Ca2+ entry and activated typical ICRAC current. STIM1 alone did not affect SOCE, whereas expression of Orai1 induced a decrease. Expression of TRPC1 induced a small increase in SOCE, which was greatly enhanced by co-expression of STIM1. Thapsigargin stimulation of cells expressing TRPC1+STIM1 activated a non-selective cation current, ISOC, that was blocked by 1 μm Gd3+ and 2-APB. Knockdown of Orai1 decreased endogenous SOCE as well as SOCE with TRPC1 alone. siOrai1 also significantly reduced SOCE and ISOC in cells expressing TRPC1+STIM1. Expression of R91WOrai1 or E106QOrai1 induced similar attenuation of TRPC1+STIM1-dependent SOCE and ISOC, whereas expression of Orai1 with TRPC1+STIM1 resulted in SOCE that was larger than that with Orai1+STIM1 or TRPC1+STIM1 but not additive. Additionally, Orai1, E106QOrai1, and R91WOrai1 co-immunoprecipitated with similar levels of TRPC1 and STIM1 from HEK293 cells, and endogenous TRPC1, STIM1, and Orai1 were co-immunoprecipitated from salivary glands. Together, these data demonstrate a functional requirement for Orai1 in TRPC1+STIM1-dependent SOCE.


PLOS Biology | 2011

Local Ca2+ Entry Via Orai1 Regulates Plasma Membrane Recruitment of TRPC1 and Controls Cytosolic Ca2+ Signals Required for Specific Cell Functions

Kwong Tai Cheng; Xibao Liu; Hwei Ling Ong; William D. Swaim; Indu S. Ambudkar

Store-operated Ca²+ entry (SOCE) has been associated with two types of channels: CRAC channels that require Orai1 and STIM1 and SOC channels that involve TRPC1, Orai1, and STIM1. While TRPC1 significantly contributes to SOCE and SOC channel activity, abrogation of Orai1 function eliminates SOCE and activation of TRPC1. The critical role of Orai1 in activation of TRPC1-SOC channels following Ca²+ store depletion has not yet been established. Herein we report that TRPC1 and Orai1 are components of distinct channels. We show that TRPC1/Orai1/STIM1-dependent I(SOC), activated in response to Ca²+ store depletion, is composed of TRPC1/STIM1-mediated non-selective cation current and Orai1/STIM1-mediated I(CRAC); the latter is detected when TRPC1 function is suppressed by expression of shTRPC1 or a STIM1 mutant that lacks TRPC1 gating, STIM1(⁶⁸⁴EE⁶⁸⁵). In addition to gating TRPC1 and Orai1, STIM1 mediates the recruitment and association of the channels within ER/PM junctional domains, a critical step in TRPC1 activation. Importantly, we show that Ca²+ entry via Orai1 triggers plasma membrane insertion of TRPC1, which is prevented by blocking SOCE with 1 µM Gd³+, removal of extracellular Ca²+, knockdown of Orai1, or expression of dominant negative mutant Orai1 lacking a functional pore, Orai1-E106Q. In cells expressing another pore mutant of Orai1, Orai1-E106D, TRPC1 trafficking is supported in Ca²+-containing, but not Ca²+-free, medium. Consistent with this, I(CRAC) is activated in cells pretreated with thapsigargin in Ca²+-free medium while I(SOC) is activated in cells pretreated in Ca²+-containing medium. Significantly, TRPC1 function is required for sustained K(Ca) activity and contributes to NFκB activation while Orai1 is sufficient for NFAT activation. Together, these findings reveal an as-yet unidentified function for Orai1 that explains the critical requirement of the channel in the activation of TRPC1 following Ca²+ store depletion. We suggest that coordinated regulation of the surface expression of TRPC1 by Orai1 and gating by STIM1 provides a mechanism for rapidly modulating and maintaining SOCE-generated Ca²+ signals. By recruiting ion channels and other signaling pathways, Orai1 and STIM1 concertedly impact a variety of critical cell functions that are initiated by SOCE.


Current Topics in Membranes | 2013

Contribution and regulation of TRPC channels in store-operated Ca2+ entry.

Kwong Tai Cheng; Hwei Ling Ong; Xibao Liu; Indu S. Ambudkar

Store-operated calcium entry (SOCE) is activated in response to depletion of the endoplasmic reticulum-Ca(2+) stores following stimulation of plasma membrane receptors that couple to PIP2 hydrolysis and IP3 generation. Search for the molecular components of SOCE channels led to the identification of mammalian transient receptor potential canonical (TRPC) family of calcium-permeable channels (TRPC1-TRPC7), which are all activated in response to stimuli that result in PIP2 hydrolysis. While several TRPCs, including TRPC1, TRPC3, and TRPC4, have been implicated in SOCE, the data are most consistent for TRPC1. Extensive studies in cell lines and knockout mouse models have established the contribution of TRPC1 to SOCE. Furthermore, there is a critical functional interaction between TRPC1 and the key components of SOCE, STIM1, and Orai1, which determines the activation of TRPC1. Orai1-mediated Ca(2+) entry is required for recruitment of TRPC1 and its insertion into surface membranes while STIM1 gates the channel. Notably, TRPC1 and Orai1 generate distinct patterns of Ca(2+) signals in cells that are decoded for the regulation of specific cellular functions. Thus, SOCE appears to be a complex process that depends on temporal and spatial coordination of several distinct steps mediated by proteins in different cellular compartments. Emerging data suggest that, in many cell types, the net Ca(2+) entry measured in response to store depletion is the result of the coordinated regulation of different calcium-permeable ion channels. Orai1 and STIM1 are central players in this process, and by mediating recruitment or activation of other Ca(2+) channels, Orai1-CRAC function can elicit rapid changes in global and local [Ca(2+)]i signals in cells. It is most likely that the type of channels and the [Ca(2+)]i signature that are generated by this process reflect the physiological function of the cell that is regulated by Ca(2+).


Traffic | 2011

Polarized but Differential Localization and Recruitment of STIM1, Orai1 and TRPC Channels in Secretory Cells

Jeong Hee Hong; Qin Li; Min Seuk Kim; Dong Min Shin; Stefan Feske; Lutz Birnbaumer; Kwong Tai Cheng; Indu S. Ambudkar; Shmuel Muallem

Polarized Ca(2+) signals in secretory epithelial cells are determined by compartmentalized localization of Ca(2+) signaling proteins at the apical pole. Recently the ER Ca(2+) sensor STIM1 (stromal interaction molecule 1) and the Orai channels were shown to play a critical role in store-dependent Ca(2+) influx. STIM1 also gates the transient receptor potential-canonical (TRPC) channels. Here, we asked how cell stimulation affects the localization, recruitment and function of the native proteins in polarized cells. Inhibition of Orai1, STIM1, or deletion of TRPC1 reduces Ca(2+) influx and frequency of Ca(2+) oscillations. Orai1 localization is restricted to the apical pole of the lateral membrane. Surprisingly, cell stimulation does not lead to robust clustering of native Orai1, as is observed with expressed Orai1. Unexpectedly, cell stimulation causes polarized recruitment of native STIM1 to both the apical and lateral regions, thus to regions with and without Orai1. Accordingly, STIM1 and Orai1 show only 40% colocalization. Consequently, STIM1 shows higher colocalization with the basolateral membrane marker E-cadherin than does Orai1, while Orai1 showed higher colocalization with the tight junction protein ZO1. TRPC1 is expressed in both apical and basolateral regions of the plasma membrane. Co-IP of STIM1/Orai1/IP(3) receptors (IP(3) Rs)/TRPCs is enhanced by cell stimulation and disrupted by 2-aminoethoxydiphenyl borate (2APB). The polarized localization and recruitment of these proteins results in preferred Ca(2+) entry that is initiated at the apical pole. These findings reveal that in addition to Orai1, STIM1 likely regulates other Ca(2+) permeable channels, such as the TRPCs. Both channels contribute to the frequency of [Ca(2+) ] oscillations and thus impact critical cellular functions.


Cell Calcium | 2011

Heteromeric TRPV4-C1 channels contribute to store-operated Ca(2+) entry in vascular endothelial cells.

Xin Ma; Kwong Tai Cheng; Ching-On Wong; Roger G. O'Neil; Lutz Birnbaumer; Indu S. Ambudkar; Xiaoqiang Yao

There is controversy as to whether TRP channels participate in mediating store-operated current (I(SOC)) and store-operated Ca(2+) entry (SOCE). Our recent study has demonstrated that TRPC1 forms heteromeric channels with TRPV4 in vascular endothelial cells and that Ca(2+) store depletion enhances the vesicle trafficking of heteromeric TRPV4-C1 channels, causing insertion of more channels into the plasma membrane in vascular endothelial cells. In the present study, we determined whether the enhanced TRPV4-C1 insertion to the plasma membrane could contribute to SOCE and I(SOC). We found that thapsigargin-induced SOCE was much lower in aortic endothelial cells derived from trpv4(-/-) or trpc1(-/-) knockout mice when compared to that of wild-type mice. In human umbilical vein endothelial cells (HUVECs), thapsigargin-induced SOCE was markedly reduced by knocking down the expression of TRPC1 and/or TRPV4 with respective siRNAs. Brefeldin A, a blocker of vesicular translocation, inhibited the SOCE. These results suggest that an enhanced vesicular trafficking of heteromeric TRPV4-C1 channels contributes to SOCE in vascular endothelial cells. Vascular tension studies suggest that such an enhanced trafficking of TRPV4-C1 channels may play a role in thapsigargin-induced vascular relaxation in rat small mesenteric arteries.


Journal of Cell Science | 2013

Impairment of TRPC1–STIM1 channel assembly and AQP5 translocation compromise agonist-stimulated fluid secretion in mice lacking caveolin1

Biswaranjan Pani; Xibao Liu; Sunitha Bollimuntha; Kwong Tai Cheng; Ingrid R. Niesman; Changyu Zheng; Virginia R. Achen; Hemal H. Patel; Indu S. Ambudkar; Brij B. Singh

Summary Neurotransmitter regulation of salivary fluid secretion is mediated by activation of Ca2+ influx. The Ca2+-permeable transient receptor potential canonical 1 (TRPC1) channel is crucial for fluid secretion. However, the mechanism(s) involved in channel assembly and regulation are not completely understood. We report that Caveolin1 (Cav1) is essential for the assembly of functional TRPC1 channels in salivary glands (SG) in vivo and thus regulates fluid secretion. In Cav1−/− mouse SG, agonist-stimulated Ca2+ entry and fluid secretion are significantly reduced. Microdomain localization of TRPC1 and interaction with its regulatory protein, STIM1, are disrupted in Cav1−/− SG acinar cells, whereas Orai1–STIM1 interaction is not affected. Furthermore, localization of aquaporin 5 (AQP5), but not that of inositol (1,4,5)-trisphosphate receptor 3 or Ca2+-activated K+ channel (IK) in the apical region of acinar cell was altered in Cav1−/− SG. In addition, agonist-stimulated increase in surface expression of AQP5 required Ca2+ influx via TRPC1 channels and was inhibited in Cav1−/− SG. Importantly, adenovirus-mediated expression of Cav1 in Cav1−/− SG restored interaction of STIM1 with TRPC1 and channel activation, apical targeting and regulated trafficking of AQP5, and neurotransmitter stimulated fluid-secretion. Together these findings demonstrate that, by directing cellular localization of TRPC1 and AQP5 channels and by selectively regulating the functional assembly TRPC1–STIM1 channels, Cav1 is a crucial determinant of SG fluid secretion.


Proceedings of the National Academy of Sciences of the United States of America | 2012

STIM1 and STIM2 protein deficiency in T lymphocytes underlies development of the exocrine gland autoimmune disease, Sjogren's syndrome.

Kwong Tai Cheng; Ilias Alevizos; Xibao Liu; Wiliam D. Swaim; Hongen Yin; Stefan Feske; Masatsugu Oh-hora; Indu S. Ambudkar

Primary Sjögrens Syndrome (pSS) is an autoimmune disease involving salivary and other exocrine glands that leads to progressive lymphocytic infiltration into the gland, tissue damage, and secretory defects. The mechanism underlying this disease remains poorly understood. Here we report that mice with T-cell–targeted deletion of Stromal Interaction Molecule (STIM) 1 and STIM2 [double-knockout (DKO)] mice develop spontaneous and severe pSS-like autoimmune disease, displaying major hallmarks of the disease. In DKO mice, diffuse lymphocytic infiltration was seen in submandibular glands, a major target of pSS, by age 6 wk, progressing to severe inflammation by age 12 wk. Sjögrens syndrome-specific autoantibodies (SSA/Ro and SSB/La) were detected in the serum, and progressive salivary gland destruction and loss of fluid secretion were also seen. Importantly, we report that peripheral blood mononuclear cells as well as lymphocytic infiltrates in submandibular glands from patients with pSS demonstrated significant reductions in STIM1 and STIM2 proteins. Store-operated calcium entry was also reduced in peripheral blood mononuclear cells from pSS patients compared with those from healthy controls. Thus, deficiency of STIM1 and STIM2 proteins in T cells, and consequent defects in Ca2+ signaling, are associated with salivary gland autoimmunopathy in DKO mice and pSS patients. These data reveal a previously unreported link between STIM1 and STIM2 proteins and pSS.


Science Signaling | 2015

STIM2 enhances receptor-stimulated Ca2+ signaling by promoting recruitment of STIM1 to the endoplasmic reticulum–plasma membrane junctions

Hwei Ling Ong; Lorena Brito de Souza; Changyu Zheng; Kwong Tai Cheng; Xibao Liu; Corinne M. Goldsmith; Stefan Feske; Indu S. Ambudkar

STIM2 increases physiological responses to agonist stimulation by promoting clustering of STIM1 and activation of Orai1. Escorting the Sensor to the Channel Receptors that trigger the release of calcium from the endoplasmic reticulum (ER) regulate various physiological processes, including fluid secretion from salivary glands. This type of calcium signaling requires calcium influx stimulated by depletion of calcium, stored in the ER, through a process involving calcium sensor protein STIM1 in the ER and the channel Orai1 at the plasma membrane. Ong et al. found that STIM2, a protein related to STIM1, helped traffic STIM1 to the junctions where the ER and plasma membrane are closely apposed, so that calcium entry through Orai1 is initiated in response to lower amounts of stimulation. The researchers showed that mice lacking STIM2 had reduced fluid secretion from their salivary glands. A central component of receptor-evoked Ca2+ signaling is store-operated Ca2+ entry (SOCE), which is activated by the assembly of STIM1-Orai1 channels in endoplasmic reticulum (ER) and plasma membrane (PM) (ER-PM) junctions in response to depletion of ER Ca2+. We report that STIM2 enhances agonist-mediated activation of SOCE by promoting STIM1 clustering in ER-PM junctions at low stimulus intensities. Targeted deletion of STIM2 in mouse salivary glands diminished fluid secretion in vivo and SOCE activation in dispersed salivary acinar cells stimulated with low concentrations of muscarinic receptor agonists. STIM2 knockdown in human embryonic kidney (HEK) 293 cells diminished agonist-induced Ca2+ signaling and nuclear translocation of NFAT (nuclear factor of activated T cells). STIM2 lacking five carboxyl-terminal amino acid residues did not promote formation of STIM1 puncta at low concentrations of agonist, whereas coexpression of STIM2 with STIM1 mutant lacking the polybasic region STIM1ΔK resulted in co-clustering of both proteins. Together, our findings suggest that STIM2 recruits STIM1 to ER-PM junctions at low stimulus intensities when ER Ca2+ stores are mildly depleted, thus increasing the sensitivity of Ca2+ signaling to agonists.

Collaboration


Dive into the Kwong Tai Cheng's collaboration.

Top Co-Authors

Avatar

Indu S. Ambudkar

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Xibao Liu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Hwei Ling Ong

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Changyu Zheng

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Lorena Brito de Souza

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Biswaranjan Pani

University of North Dakota

View shared research outputs
Top Co-Authors

Avatar

Brij B. Singh

University of North Dakota

View shared research outputs
Top Co-Authors

Avatar

Biman C. Paria

University of Illinois at Chicago

View shared research outputs
Researchain Logo
Decentralizing Knowledge