Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kwonho Hong is active.

Publication


Featured researches published by Kwonho Hong.


Journal of Pineal Research | 2016

Melatonin prevents cisplatin-induced primordial follicle loss via suppression of PTEN/AKT/FOXO3a pathway activation in the mouse ovary

Hoon Jang; Ok-Hee Lee; Youngeun Lee; Hyemin Yoon; Eun Mi Chang; Miseon Park; Jeong-Woong Lee; Kwonho Hong; Jung Oh Kim; Nam Keun Kim; Jung Jae Ko; Dong Ryul Lee; Tae Ki Yoon; Woo Sik Lee; Youngsok Choi

Premature ovarian failure (POF) is a major side effect of chemotherapy in young cancer patients. To develop pharmaceutical agents for preserving fertility, it is necessary to understand the mechanisms responsible for chemotherapy‐induced follicle loss. Here, we show that treatment with cisplatin, a widely used anticancer drug, depleted the dormant follicle pool in mouse ovaries by excessive activation of the primordial follicles, without inducing follicular apoptosis. Moreover, we show that co‐treatment with the antioxidant melatonin prevented cisplatin‐induced disruption of the follicle reserve. We quantified the various stages of growing follicles, including primordial, primary, secondary, and antral, to demonstrate that cisplatin treatment alone significantly decreased, whereas melatonin co‐treatment preserved, the number of primordial follicles in the ovary. Importantly, analysis of the PTEN/AKT/FOXO3a pathway demonstrated that melatonin significantly decreased the cisplatin‐mediated inhibitory phosphorylation of PTEN, a key negative regulator of dormant follicle activation. Moreover, melatonin prevented the cisplatin‐induced activating phosphorylation of AKT, GSK3β, and FOXO3a, all of which trigger follicle activation. Additionally, we show that melatonin inhibited the cisplatin‐induced inhibitory phosphorylation and nuclear export of FOXO3a, which is required in the nucleus to maintain dormancy of the primordial follicles. These findings demonstrate that melatonin attenuates cisplatin‐induced follicle loss by preventing the phosphorylation of PTEN/AKT/FOXO3a pathway members; thus, melatonin is a potential therapeutic agent for ovarian protection and fertility preservation during chemotherapy in female cancer patients.


Macromolecular Bioscience | 2015

Biodegradable Nanotopography Combined with Neurotrophic Signals Enhances Contact Guidance and Neuronal Differentiation of Human Neural Stem Cells

Kisuk Yang; Esther Park; Jong Seung Lee; Il Sun Kim; Kwonho Hong; Kook In Park; Seung Woo Cho; Hee Seok Yang

Biophysical cues provided by nanotopographical surfaces have been used as stimuli to guide neurite extension and regulate neural stem cell (NSC) differentiation. Here, we fabricated biodegradable polymer substrates with nanoscale topography for enhancing human NSC (hNSC) differentiation and guided neurite outgrowth. The substrate was constructed from biodegradable poly(lactic-co-glycolic acid) (PLGA) using solvent-assisted capillary force lithography. We found that precoating with 3,4-dihydroxy-l-phenylalanine (DOPA) facilitated the immobilization of poly-l-lysine and fibronectin on PLGA substrates via bio-inspired catechol chemistry. The DOPA-coated nanopatterned substrates directed cellular alignment along the patterned grooves by contact guidance, leading to enhanced focal adhesion, skeletal protein reorganization, and neuronal differentiation of hNSCs as indicated by highly extended neurites from cell bodies and increased expression of neuronal markers (Tuj1 and MAP2). The addition of nerve growth factor further enhanced neuronal differentiation of hNSCs, indicating a synergistic effect of biophysical and biochemical cues on NSC differentiation. These bio-inspired PLGA nanopatterned substrates could potentially be used as implantable biomaterials for improving the efficacy of hNSCs in treating neurodegenerative diseases.


Tissue Engineering and Regenerative Medicine | 2015

Cellular reprogramming and its application in regenerative medicine

Kwonho Hong

Ever since a technology to reprogram somatic cells into pluripotent stem cells was developed by Dr. Shinya Yamanaka’s group in 2006, its therapeutic potential has been extensively discussed. We now call the reprogrammed embryonic stem cell (ESC)-like cell an ‘induced pluripotent stem cell’ (iPSC). The beauty and power of the iPS in human case is that it avoids many ethical issues, in that unlike human ESCs (hESCs), iPSCs do not require destroying a human embryo to establish pluripotent cell lines. The iPSC holds many hopes that many human diseases may be treatable in the near future. On the other hand, there are still several issues that need to be solved prior to the therapeutic use of iPSCs in humans directly. The biggest hurdle is that, so far, there is lack of ways to completely exclude tumorigenic iPSC-derived cells. Additionally, there is an issue that immune rejection may occur, even in autologously grafted iPSCs, as was observed in monkey experiment. Nevertheless, iPSCs, combined with genetic manipulation, hold much promise that iPSCs may be used in cell therapy procedures and as tools for investigating underlying mechanisms of human diseases. This review will discuss recent progress in cellular reprogramming and its potential use in regenerative medicine.


Biochemical and Biophysical Research Communications | 2016

Indispensable role for mouse ELP3 in embryonic stem cell maintenance and early development.

Hyunjin Yoo; Dabin Son; Young-Joo Jang; Kwonho Hong

ELP3, a core component of Elongator, has been implicated in translational regulation via modification of tRNA at the wobble position. However, the precise biological function of ELP3 in early mouse development has not yet been defined. We here provide evidence that ELP3 plays crucial roles in mouse embryonic stem cell (ESC) maintenance and early development. ELP3 was detected ubiquitously in blastocysts and E10.5 embryos and shown to be increased during ESC differentiation. Depletion of ELP3 in ESC led to aberrant cell cycle progression, along with reduced expression of genes for pluripotency. Interestingly, our analyses revealed that, although the mRNA levels of the genes related to cell cycle were increased, protein levels were diminished in knockdown (KD) ESCs. The data, therefore, suggest that ELP3 function is critical for translational efficiency of the genes. Consistent with a proliferation defect in KD cells, Elp3 knockout (KO) embryos suffered from severe growth retardation and failed to develop beyond E12.5. In conclusion, we have demonstrated that ELP3 plays an indispensable role in ESC survival, differentiation and embryonic development in mouse.


Cellular Physiology and Biochemistry | 2016

RASD1 Knockdown Results in Failure of Oocyte Maturation

Youngeun Lee; Kyeoung-Hwa Kim; Hyemin Yoon; Ok-Hee Lee; Eun-Young Kim; Miseon Park; Hoon Jang; Kwonho Hong; Hyuk Song; Jung Jae Ko; Woo Sik Lee; Kyung-Ah Lee; Eun Mi Chang; Youngsok Choi

Background: Ras dexamethasone-induced protein (RASD1) is a member of Ras superfamily of small GTPases. RASD1 regulates various signaling pathways involved in iron homeostasis, growth hormone secretion, and circadian rhythm. However, RASD1 function in oocyte remains unknown. Methods: Using immunohistochemistry, immunofluorescence, and quantitative real-time RT-PCR, RASD1 expression in mouse ovary and RASD1 role in oocyte maturation-related gene expression, spindle formation, and chromosome alignment were analyzed. RNAi microinjection and time-lapse video microscopy were used to examine the effect of Rasd1 knockdown on oocyte maturation. Results: RASD1 was highly detected in oocytes transitioning from primordial to secondary follicles. Rasd1 was highly expressed in germinal vesicle (GV), during GV breakdown, and in metaphase I (MI) stage as oocytes mature, and its expression was significantly downregulated in MII stage. With knockdown of Rasd1, maturation in GV oocytes was arrested at MI stage, showing disrupted meiotic spindling and chromosomal misalignment. In addition, Obox4 and Arp2/3, engaged in MI-MII transition and cytokinesis, respectively, were misregulated in GV oocytes by Rasd1 knockdown. Conclusion: These findings suggest that RASD1 is a novel factor in MI-MII oocyte transition and may be involved in regulating the progression of cytokinesis and spindle formation, controlling related signaling pathways during oocyte maturation.


Journal of Pineal Research | 2017

Synergistic effect of melatonin and ghrelin in preventing cisplatin‐induced ovarian damage via regulation of FOXO3a phosphorylation and binding to the p27Kip1 promoter in primordial follicles

Hoon Jang; Younghwa Na; Kwonho Hong; Sang‐Ho Lee; Sohyeon Moon; Minha Cho; Miseon Park; Ok-Hee Lee; Eun Mi Chang; Dong Ryul Lee; Jung Jae Ko; Woo Sik Lee; Youngsok Choi

Premature ovarian failure during chemotherapy is a serious problem for young women with cancer. To preserve the fertility of these patients, approaches to prevent chemotherapy‐induced ovarian failure are needed. In a previous study, we reported that melatonin treatment prevents the depletion of the dormant follicle pool via repression of the simultaneous activation of dormant primordial follicles by cisplatin. However, melatonins protective effect was only partial and thus insufficient. In this study, we found that the hormone ghrelin enhances the protective effect of melatonin against cisplatin‐induced ovarian failure in mouse model. Co‐administration of melatonin and ghrelin more effectively prevented cisplatin‐induced follicle disruption. Simultaneous treatment with melatonin and ghrelin almost restored the number of primordial follicles and the corpus luteum in cisplatin‐treated ovaries, compared with single administration. We found melatonin and ghrelin receptors on the cell membrane of premature oocytes of primordial follicles. In addition, melatonin and ghrelin co‐administration inhibited the cisplatin‐induced phosphorylation of PTEN and FOXO3a that induces cytoplasmic translocation of FOXO3a. Inhibition of FOXO3a phosphorylation by melatonin and ghrelin increased the binding affinity of FOXO3a for the p27Kip1 promoter in primordial follicles. Co‐administration of melatonin and ghrelin in cisplatin‐treated ovaries restored the expression of p27Kip1, which is critical for retention of the dormant status of primordial follicles. In conclusion, these findings suggest that melatonin and ghrelin co‐administration is suitable for use as a fertoprotective adjuvant therapy during cisplatin chemotherapy in young female cancer patients.


Molecular and Cellular Endocrinology | 2015

The expression of aminoacyl-tRNA-synthetase-interacting multifunctional protein-1 (Aimp1) is regulated by estrogen in the mouse uterus

Ji-Hye Jeong; Miree Park; Miseon Park; Eun Jin Lim; Hye-Ryun Kim; Haengseok Song; Sang Gyu Park; Eun-Jin Choi; Kwonho Hong; Dong Ryul Lee; Jeong-Jae Ko; Youngsok Choi

Aimp1 is known as a multifunctional cytokine in various cellular events. Recent study showed Aimp1 is localized in glandular epithelial, endothelial, and stromal cells in functionalis and basalis layers of the endometrium. However, the regulatory mechanism of Aimp1 in the uterus remains unknown. In the present study, we found that Aimp1 is expressed in the mouse uterus. Aimp1 transcripts were decreased at diestrus stage. However, the level of Aimp1 protein was significantly increased in the luminal epithelium in the uterine endometrium at estrus stage during the estrous cycle. We found that treatment of estrogen increased the expression of Aimp1 in the uterus in ovarectomized mice. We identified one estrogen receptor binding element (ERE) on mouse Aimp1 promoter. The activity of Aimp1 promoter was increased with estrogen treatment. Our findings indicate that Aimp1 might act as an important regulator to remodel the uterine endometrium and its expression might be regulated by estrogen during the estrous cycle. This will give us better understanding of the dynamic change of uterine remodeling during the estrous cycle.


Scientific Data | 2018

Microarray profiling of miRNA and mRNA expression in Rag2 knockout and wild-type mouse spleens

Abu Musa Md Talimur Reza; Seong-Keun Cho; Yun-Jung Choi; Kwonho Hong; Jin-Hoi Kim

The Rag2 knockout (KO) mouse is one of the most popular immune compromised animal models used in biomedical research. The immune compromised state concurrently alters many signalling pathways and molecules, including miRNAs and mRNA transcripts that are involved in important biological processes. In addition, miRNAs and transcripts are interdependent, often forming a feedback loop; dysregulation in one might alter the expression of the other, and both participate in many physiological processes including immune regulation. Here, we describe a comprehensive dataset containing alterations in the expression of both miRNAs and mRNAs in Rag2 KO mice compared to their wild type counterparts. The miRNA and mRNA expression profiles were generated from total RNA using a miRNA expression microarray or a BeadChip microarray, respectively. Hence, this dataset will provide the groundwork for a comparative study of the miRNAs and mRNAs that are dysregulated in Rag2 KO mice. It is hoped that the data will illuminate how miRNAs mediate immune regulation, as well as the interaction between miRNAs and mRNAs in Rag2 KO mice.


Scientific Reports | 2016

SOHLH2 is essential for synaptonemal complex formation during spermatogenesis in early postnatal mouse testes

Miree Park; Youngeun Lee; Hoon Jang; Ok-Hee Lee; Sung-Won Park; Jae-Hwan Kim; Kwonho Hong; Hyuk Song; Se-Pill Park; Yun-Yong Park; Jung Jae Ko; Youngsok Choi

Spermatogenesis- and oogenesis-specific helix-loop-helix transcription factor 2 (SOHLH2) is exclusively expressed in germ cells of the gonads. Previous studies show that SOHLH2 is critical for spermatogenesis in mouse. However, the regulatory mechanism of SOHLH2 during early spermatogenesis is poorly understood. In the present study, we analyzed the gene expression profile of the Sohlh2-deficient testis and examined the role of SOHLH2 during spermatogenesis. We found 513 genes increased in abundance, while 492 genes decreased in abundance in 14-day-old Sohlh2-deficient mouse testes compared to wildtype mice. Gene ontology analysis revealed that Sohlh2 disruption effects the relative abundance of various meiotic genes during early spermatogenesis, including Spo11, Dmc1, Msh4, Prdm9, Sycp1, Sycp2, Sycp3, Hormad1, and Hormad2. Western blot analysis and immunostaining showed that SYCP3, a component of synaptonemal complex, was significantly less abundant in Sohlh2-deficient spermatocytes. We observed a lack of synaptonemal complex formation during meiosis in Sohlh2-deficient spermatocytes. Furthermore, we found that SOHLH2 interacted with two E-boxes on the mouse Sycp1 promoter and Sycp1 promoter activity increased with ectopically expressed SOHLH2. Taken together, our data suggest that SOHLH2 is critical for the formation of synaptonemal complexes via its regulation of Sycp1 expression during mouse spermatogonial differentiation.


Asian-australasian Journal of Animal Sciences | 2015

Tudor Domain Containing Protein TDRD12 Expresses at the Acrosome of Spermatids in Mouse Testis.

Min Kim; Byeong Seong Ki; Kwonho Hong; Se-Pill Park; Jung-Jae Ko; Youngsok Choi

Tdrd12 is one of tudor domain containing (Tdrd) family members. However, the expression pattern of Tdrd12 has not been well studied. To compare the expression levels of Tdrd12 in various tissues, real time-polymerase chain reaction was performed using total RNAs from liver, small intestine, heart, brain, kidney, lung, spleen, stomach, uterus, ovary, and testis. Tdrd12 mRNA was highly expressed in testis. Antibody against mouse TDRD12 were generated using amino acid residues SQRPNEKPLRLTEKKDC of TDRD12 to investigate TDRD12 localization in testis. Immunostaining assay shows that TDRD12 is mainly localized at the spermatid in the seminiferous tubules of adult testes. During postnatal development, TDRD12 is differentially expressed. TDRD12 was detected in early spermatocytes at 2 weeks and TDRD12 was localized at acrosome of the round spermatids. TDRD12 expression was not co-localized with TDRD1 which is an important component of piRNA pathway in germ cells. Our results indicate that TDRD12 may play an important role in spermatids and function as a regulator of spermatogenesis in dependent of TDRD1.

Collaboration


Dive into the Kwonho Hong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge