Kye-Il Joo
University of Southern California
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kye-Il Joo.
Biomaterials | 2011
Muxun Zhao; Anuradha Biswas; Biliang Hu; Kye-Il Joo; Pin Wang; Zhen Gu; Yi Tang
Direct delivery of proteins to the cytosol of cells holds tremendous potential in biological and medical applications. Engineering vehicles for escorting proteins to the cytosol in a controlled release fashion has thus generated considerable interest. We report here the preparation of redox-responsive single-protein nanocapsules for intracellular protein delivery. Through in situ interfacial polymerization, the target protein is noncovalently encapsulated into a positively-charged polymeric shell interconnected by disulfide-containing crosslinkers. The dissociation of the polymeric shell under reducing conditions and the subsequent release of protein were confirmed using cell-free assays in the presence of glutathione (GSH). The nanocapsules were demonstrated to be efficiently internalized into the cells and to release the protein in the reducing cytosol. Using the nanocapsule as a vehicle, we showed that active caspase 3 (CP-3) can be delivered and can induce apoptosis in a variety of human cancer cell lines, including HeLa, MCF-7 and U-87 MG. Our approach therefore presents an effective intracellular protein delivery strategy for therapeutic, diagnostic and reprogramming applications.
Nano Letters | 2009
Zhen Gu; Ming Yan; Biliang Hu; Kye-Il Joo; Anuradha Biswas; Yu Huang; Yunfeng Lu; Pin Wang; Yi Tang
Target proteins can be functionally encapsulated using a cocoon-like polymeric nanocapsule formed by interfacial polymerization. The nanocapsule is cross-linked by peptides that can be proteolyzed by proteases upon which the protein cargo is released. The protease-mediated degradation process can be controlled in a spatiotemporal fashion through modification of the peptide cross-linker with photolabile moieties. We demonstrate the utility of this approach through the cytoplasmic delivery of the apoptosis inducing caspase-3 to cancer cells.
ACS Nano | 2008
Kye-Il Joo; Yuning Lei; Chi-Lin Lee; Jonathon Lo; Jiansong Xie; Sarah F. Hamm-Alvarez; Pin Wang
This study reports a general method of labeling enveloped viruses with semiconductor quantum dots (QDs) for use in single virus trafficking studies. Retroviruses, including human immunodeficiency virus (HIV), could be successfully tagged with QDs through the membrane incorporation of a short acceptor peptide (AP) that is susceptible to site-specific biotinylation and attachment of streptavidin-conjugated QDs. It was found that this AP tag-based QD labeling had little effect on the viral infectivity and allowed for the study of the kinetics of the internalization of the recombinant lentivirus enveloped with vesicular stomatitis virus glycoprotein (VSVG) into the early endosomes. It also allows for the live cell imaging of the trafficking of labeled virus to the Rab5(+) endosomal compartments. This study further demonstrated by direct visualization of QD-labeled virus that VSVG-pseudotyped lentivirus enters cells independent of clatherin- and caveolin-pathways, while the entry of VSVG-pseudotyped retrovirus occurs via the clathrin pathway. The studies monitoring HIV particles using QD-labeling showed that we could detect single virions on the surface of target cells expressing either CD4/CCR5 or DC-SIGN. Further internalization studies of QD-HIV evidently showed that the clathrin pathway is the major route for DC-SIGN-mediated uptake of viruses. Taken together, our data demonstrate the potential of this QD-labeling for visualizing the dynamic interactions between viruses and target cell structures.
ACS Nano | 2011
Kye-Il Joo; Yun Fang; Yarong Liu; Liang Xiao; Zhen Gu; April Tai; Chi-Lin Lee; Yi Tang; Pin Wang
The unique spectral properties of semiconductor quantum dots (QDs) enable long-term live-cell imaging and ultrasensitive detection of viral particles, which in turn can potentially provide a practical means for detailed analysis of the underlying molecular mechanisms of virus entry. In this study, we report a general method of labeling adeno-associated virus serotype 2 (AAV2) with QDs for enhanced visualization of the intracellular behavior of viruses in living target cells. It was found that the mild conditions required for this QD conjugation reaction allowed for the retention of viral infectivity of AAV2. Furthermore, quantitative analysis of viral motility in living cells suggested that QD-labeling had no significant effect on the intracellular transport properties of AAV2 particles compared to those of conventional organic dye-labeled AAV2. Our imaging study demonstrated that QD-AAV2 was internalized mainly through a clathrin-dependent pathway and then trafficked through various endosomes. It was also observed that QD-AAV2 particles exploit the cytoskeleton network to facilitate their transport within cells, and the labeling study provided evidence that the ubiquitin-proteasome system was likely involved in the intracellular trafficking of AAV2, at least at the level of nuclear transport. Taken together, our findings reveal the potential of this QD-labeling method for monitoring the intracellular dynamics of virus-host cell interactions and interrogating the molecular mechanisms of viral infection in greater detail.
ACS Nano | 2011
Anuradha Biswas; Kye-Il Joo; Jing Liu; Muxun Zhao; Guoping Fan; Pin Wang; Zhen Gu; Yi Tang
Proteins possess distinct intracellular roles allowing them to have vast therapeutic applications. However, due to poor cellular permeability and fragility of most proteins, intracellular delivery of native, active proteins is challenging. We describe a biomimetic protein delivery vehicle which is degradable upon the digestion by furin, a ubiquitous intracellular protease, to release encapsulated cargos. Proteins were encapsulated in a nanosized matrix prepared with monomers and a bisacrylated peptide cross-linker which can be specifically recognized and cleaved by furin. Release of encapsulated protein was confirmed in a cell-free system upon proteolytic degradation of nanocapsules. In vitro cell culture studies demonstrated successful intracellular delivery of both nuclear and cytosolic proteins and confirmed the importance of furin-degradable construction for native protein release. This endoprotease-mediated intracellular delivery system may be extended to effectively deliver various biological therapeutics.
Molecular Therapy | 2011
Yuning Lei; Chi-Lin Lee; Kye-Il Joo; Jonathan Zarzar; Yarong Liu; Bingbing Dai; Victoria Fox; Pin Wang
Human embryonic stem (hES) cells are renewable cell sources that have potential applications in regenerative medicine. The development of technologies to produce permanent and site-specific genome modifications is in demand to achieve future medical implementation of hES cells. We report herein that a baculoviral vector (BV) system carrying zinc-finger nucleases (ZFNs) can successfully modify the hES cell genome. BV-mediated transient expression of ZFNs specifically disrupted the CCR5 locus in transduced cells and the modified cells exhibited resistance to HIV-1 transduction. To convert the BV to a gene targeting vector, a DNA donor template and ZFNs were incorporated into the vector. These hybrid vectors yielded permanent site-specific gene addition in both immortalized human cell lines (10%) and hES cells (5%). Modified hES cells were both karyotypically normal and pluripotent. These results suggest that this baculoviral delivery system can be engineered for site-specific genetic manipulation in hES cells.
Gene Therapy | 2013
Yarong Liu; Kye-Il Joo; Pin Wang
We investigated the transduction of HEK293T cells permissive to adeno-associated virus serotype 8 (AAV8) to understand the mechanisms underlying its endocytic processing. Results showed that AAV8 enters cells through clathrin-mediated endocytosis followed by trafficking through various endosomal compartments. Interestingly, compared to the relatively well-characterized AAV2, a distinct involvement of late endosomes was observed for AAV8 trafficking within the target cell. AAV8 particles were also shown to exploit the cytoskeleton network to facilitate their transport within cells. Moreover, the cellular factors involved during endosomal escape were examined by an in vitro membrane permeabilization assay. Our data demonstrated that an acidic endosomal environment was required for AAV2 penetration through endosomal membranes and that the cellular endoprotease furin could promote AAV2 escape from the early endosomes. In contrast, these factors were not sufficient for AAV8 penetration through endosomal membranes. We further found that the ubiquitin–proteasome system is likely involved in the intracellular transport of AAV8 to nucleus. Taken together, our data have shed some light on the intracellular trafficking pathways of AAV8, which, in turn, could provide insight for potentializing AAV-mediated gene delivery.
Gene Therapy | 2008
Kye-Il Joo; Pin Wang
We have reported a method to target lentiviral vectors to specific cell types. This method requires the incorporation of two distinct molecules on the viral vector surface: one is an antibody that renders the targeting specificity for the engineered vector, and the other is a fusogenic protein that allows the engineered vector to enter the target cell. However, the molecular mechanism that controls the targeted infection needs to be defined. In this report, we tracked the individual lentiviral particles by labeling the virus with the GFP–Vpr fusion protein. We were able to visualize the surface-displayed proteins on a single virion as well as antibody-directed targeting to a desired cell type. We also demonstrated the dynamics of virus fusion with endosomes and monitored endosome-associated transport of viruses in target cells. Our results suggest that the fusion between the engineered lentivirus and endosomes takes place at the early endosome level, and that the release of the viral core into the cytosol at the completion of the virus–endosome fusion is correlated with the endosome maturation process. This imaging study sheds some light on the infection mechanism of the engineered lentivirus and can be beneficial to the design of more efficient gene delivery vectors.
Journal of Biological Engineering | 2011
April Tai; Steven Froelich; Kye-Il Joo; Pin Wang
BackgroundDendritic cells (DCs) are antigen-presenting immune cells that interact with T cells and have been widely studied for vaccine applications. To achieve this, DCs can be manipulated by lentiviral vectors (LVs) to express antigens to stimulate the desired antigen-specific T cell response, which gives this approach great potential to fight diseases such as cancers, HIV, and autoimmune diseases. Previously we showed that LVs enveloped with an engineered Sindbis virus glycoprotein (SVGmu) could target DCs through a specific interaction with DC-SIGN, a surface molecule predominantly expressed by DCs. We hypothesized that SVGmu interacts with DC-SIGN in a mannose-dependent manner, and that an increase in high-mannose structures on the glycoprotein surface could result in higher targeting efficiencies of LVs towards DCs. It is known that 1-deoxymannojirimycin (DMJ) can inhibit mannosidase, which is an enzyme that removes high-mannose structures during the glycosylation process. Thus, we investigated the possibility of generating LVs with enhanced capability to modify DCs by supplying DMJ during vector production.ResultsThrough western blot analysis and binding tests, we were able to infer that binding of SVGmu to DC-SIGN is directly related to amount of high-mannose structures on SVGmu. We also found that the titer for the LV (FUGW/SVGmu) produced with DMJ against 293T.DCSIGN, a human cell line expressing the human DC-SIGN atnibody, was over four times higher than that of vector produced without DMJ. In addition, transduction of a human DC cell line, MUTZ-3, yielded a higher transduction efficiency for the LV produced with DMJ.ConclusionWe conclude that LVs produced under conditions with inhibited mannosidase activity can effectively modify cells displaying the DC-specific marker DC-SIGN. This study offers evidence to support the utilization of DMJ in producing LVs that are enhanced carriers for the development of DC-directed vaccines.
Small | 2013
Yarong Liu; Yun Fang; Yu Zhou; Ebrahim Zandi; Chi-Lin Lee; Kye-Il Joo; Pin Wang
As a consequence of their well-defined nanostructure and intrinsic bioactive functionality, virus-based nanoparticles have shown promise for mediating gene delivery. Adeno-associated virus (AAV) nanoparticles, which possess an excellent safety profile and therapeutic potential, hold potential for use in human gene therapy. However, because of their native tropisms, the applicability of AAV nanoparticles is often limited to restricted ranges of cells or tissues. Thus, retargeting AAV particles to the desired cell populations has continued to be a major research focus in many gene therapy applications. In this study, a general strategy is reported for nanoparticle targeting. This involves the site-specific modification of AAV type 2 (AAV2) by genetically incorporating a short peptide, in this case an aldehyde tag, in the viral capsid. Such a tag can be exploited for site-specific attachment of targeting molecules and allows for further introduction of targeting antibodies or ligands. It is shown that this modification neither affects the level of infectious viral titer nor intracellular trafficking properties. Furthermore, the site-specific conjugation of targeting antibodies could significantly enhance viral transduction to those target cells that have otherwise exhibited very low permissiveness to AAV2 infection. This method also allows the functional incorporation of RGD peptides onto AAV2 for enhanced delivery with implications for cancer gene therapy.