Kyle J. Roux
University of South Dakota
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kyle J. Roux.
Journal of Cell Biology | 2006
Melissa Crisp; Qian Liu; Kyle J. Roux; Jerome B. Rattner; Catherine M. Shanahan; Brian Burke; Phillip D. Stahl; Didier Hodzic
The nuclear envelope defines the barrier between the nucleus and cytoplasm and features inner and outer membranes separated by a perinuclear space (PNS). The inner nuclear membrane contains specific integral proteins that include Sun1 and Sun2. Although the outer nuclear membrane (ONM) is continuous with the endoplasmic reticulum, it is nevertheless enriched in several integral membrane proteins, including nesprin 2 Giant (nesp2G), an 800-kD protein featuring an NH2-terminal actin-binding domain. A recent study (Padmakumar, V.C., T. Libotte, W. Lu, H. Zaim, S. Abraham, A.A. Noegel, J. Gotzmann, R. Foisner, and I. Karakesisoglou. 2005. J. Cell Sci. 118:3419–3430) has shown that localization of nesp2G to the ONM is dependent upon an interaction with Sun1. In this study, we confirm and extend these results by demonstrating that both Sun1 and Sun2 contribute to nesp2G localization. Codepletion of both of these proteins in HeLa cells leads to the loss of ONM-associated nesp2G, as does overexpression of the Sun1 lumenal domain. Both treatments result in the expansion of the PNS. These data, together with those of Padmakumar et al. (2005), support a model in which Sun proteins tether nesprins in the ONM via interactions spanning the PNS. In this way, Sun proteins and nesprins form a complex that links the nucleoskeleton and cytoskeleton (the LINC complex).
Journal of Cell Biology | 2012
Kyle J. Roux; Dae In Kim; Manfred Raida; Brian Burke
Proximity-dependent biotin identification (BioID) is a new approach making use of biotin ligase fusion proteins for the identification of both interacting and neighboring proteins in their native cellular environment.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Kyle J. Roux; Melissa Crisp; Qian Liu; Daein Kim; Serguei Kozlov; Colin L. Stewart; Brian Burke
Nucleocytoplasmic coupling is mediated by outer nuclear membrane (ONM) nesprin proteins and inner nuclear membrane Sun proteins. Interactions spanning the perinuclear space create nesprin–Sun complexes connecting the cytoskeleton to nuclear components. A search for proteins displaying a conserved C-terminal sequence present in nesprins 1–3 identified nesprin 4 (Nesp4), a new member of this family. Nesp4 is a kinesin-1-binding protein that displays Sun-dependent localization to the ONM. Expression of Nesp4 is associated with dramatic changes in cellular organization involving relocation of the centrosome and Golgi apparatus relative to the nucleus. These effects can be accounted for entirely by Nesp4s kinesin-binding function. The implication is that Nesp4 may contribute to microtubule-dependent nuclear positioning.
Journal of Biological Chemistry | 2011
Maria L. Lombardi; Diana E. Jaalouk; Catherine M. Shanahan; Brian Burke; Kyle J. Roux; Jan Lammerding
Maintaining physical connections between the nucleus and the cytoskeleton is important for many cellular processes that require coordinated movement and positioning of the nucleus. Nucleo-cytoskeletal coupling is also necessary to transmit extracellular mechanical stimuli across the cytoskeleton to the nucleus, where they may initiate mechanotransduction events. The LINC (Linker of Nucleoskeleton and Cytoskeleton) complex, formed by the interaction of nesprins and SUN proteins at the nuclear envelope, can bind to nuclear and cytoskeletal elements; however, its functional importance in transmitting intracellular forces has never been directly tested. This question is particularly relevant since recent findings have linked nesprin mutations to muscular dystrophy and dilated cardiomyopathy. Using biophysical assays to assess intracellular force transmission and associated cellular functions, we identified the LINC complex as a critical component for nucleo-cytoskeletal force transmission. Disruption of the LINC complex caused impaired propagation of intracellular forces and disturbed organization of the perinuclear actin and intermediate filament networks. Although mechanically induced activation of mechanosensitive genes was normal (suggesting that nuclear deformation is not required for mechanotransduction signaling) cells exhibited other severe functional defects after LINC complex disruption; nuclear positioning and cell polarization were impaired in migrating cells and in cells plated on micropatterned substrates, and cell migration speed and persistence time were significantly reduced. Taken together, our findings suggest that the LINC complex is critical for nucleo-cytoskeletal force transmission and that LINC complex disruption can result in defects in cellular structure and function that may contribute to the development of muscular dystrophies and cardiomyopathies.
Science | 2007
Colin L. Stewart; Kyle J. Roux; Brian Burke
The past decade has seen a complete rethinking of the traditional view of the nuclear envelope as simply a passive enclosure for the chromosomes. The convergence of several lines of clinical and basic research has revealed additional roles in both signaling and mitotic progression. It is becoming apparent that the nuclear envelope defines not only nuclear organization but also that of the cytoskeleton and, in this way, integrates both nuclear and cytoplasmic architecture.
Journal of Cell Biology | 2007
Qian Liu; Nelly Panté; Tom Misteli; Mohamed Y. Elsagga; Melissa Crisp; Didier Hodzic; Brian Burke; Kyle J. Roux
Sun1 and 2 are A-type lamin-binding proteins that, in association with nesprins, form a link between the inner nuclear membranes (INMs) and outer nuclear membranes of mammalian nuclear envelopes. Both immunofluorescence and immunoelectron microscopy reveal that Sun1 but not Sun2 is intimately associated with nuclear pore complexes (NPCs). Topological analyses indicate that Sun1 is a type II integral protein of the INM. Localization of Sun1 to the INM is defined by at least two discrete regions within its nucleoplasmic domain. However, association with NPCs is dependent on the synergy of both nucleoplasmic and lumenal domains. Cells that are either depleted of Sun1 by RNA interference or that overexpress dominant-negative Sun1 fragments exhibit clustering of NPCs. The implication is that Sun1 represents an important determinant of NPC distribution across the nuclear surface.
Developmental Cell | 2010
Lidia Hernandez; Kyle J. Roux; Esther Sook Miin Wong; Leslie C. Mounkes; Rafidah Mutalif; Raju Navasankari; Bina Rai; Simon M. Cool; Jae Wook Jeong; Honghe Wang; Hyun-Shik Lee; Serguei Kozlov; Martin Grünert; Thomas Keeble; C. Michael Jones; Margarita Meta; Stephen G. Young; Ira O. Daar; Brian Burke; Alan O. Perantoni; Colin L. Stewart
The segmental premature aging disease Hutchinson-Gilford Progeria (HGPS) is caused by a truncated and farnesylated form of Lamin A. In a mouse model for HGPS, a similar Lamin A variant causes the proliferative arrest and death of postnatal, but not embryonic, fibroblasts. Arrest is due to an inability to produce a functional extracellular matrix (ECM), because growth on normal ECM rescues proliferation. The defects are associated with inhibition of canonical Wnt signaling, due to reduced nuclear localization and transcriptional activity of Lef1, but not Tcf4, in both mouse and human progeric cells. Defective Wnt signaling, affecting ECM synthesis, may be critical to the etiology of HGPS because mice exhibit skeletal defects and apoptosis in major blood vessels proximal to the heart. These results establish a functional link between the nuclear envelope/lamina and the cell surface/ECM and may provide insights into the role of Wnt signaling and the ECM in aging.
Developmental Cell | 2009
Brian Burke; Kyle J. Roux
Eukaryotic cells display considerable morphological plasticity linked to their abilities to carry out a myriad of complex functions. Structural rearrangements associated with cellular activities, from yeast mitosis to cell migration in the mammalian central nervous system, often involve relocation of the cell nucleus. Recent studies have provided insight into how nuclear components can be mechanically coupled to the cytoskeleton, providing a more complete understanding of the role of nuclear positioning in both health and disease.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Dae In Kim; Birendra Kc; Wenhong Zhu; Khatereh Motamedchaboki; Valérie Doye; Kyle J. Roux
Significance Proximity-dependent biotinylation (BioID) is a readily accessible method for identifying protein associations that occur in living cells. Fusion of a promiscuous biotin ligase to a bait protein for expression in live cells enables covalent biotin labeling, and thus identification, of proteins proximate to the bait. Here we used BioID to probe the organization of the nuclear pore complex, a large structure that regulates molecular transport between the nucleus and cytoplasm. These studies enhance our understanding of major subcomplexes within the nuclear pore complex and demonstrate the utility of BioID for studying the organization of large protein assemblies. Additionally, we have measured the labeling radius of BioID, thus enabling the rational application of this method and more meaningful data interpretation. Proximity-dependent biotin identification (BioID) is a method for identifying protein associations that occur in vivo. By fusing a promiscuous biotin ligase to a protein of interest expressed in living cells, BioID permits the labeling of proximate proteins during a defined labeling period. In this study we used BioID to study the human nuclear pore complex (NPC), one of the largest macromolecular assemblies in eukaryotes. Anchored within the nuclear envelope, NPCs mediate the nucleocytoplasmic trafficking of numerous cellular components. We applied BioID to constituents of the Nup107–160 complex and the Nup93 complex, two conserved NPC subcomplexes. A strikingly different set of NPC constituents was detected depending on the position of these BioID-fusion proteins within the NPC. By applying BioID to several constituents located throughout the extremely stable Nup107–160 subcomplex, we refined our understanding of this highly conserved subcomplex, in part by demonstrating a direct interaction of Nup43 with Nup85. Furthermore, by using the extremely stable Nup107–160 structure as a molecular ruler, we defined the practical labeling radius of BioID. These studies further our understanding of human NPC organization and demonstrate that BioID is a valuable tool for exploring the constituency and organization of large protein assemblies in living cells.
Genes, Chromosomes and Cancer | 2000
Sonja A. Rasmussen; Jennifer Overman; Susanne A. M. Thomson; Steven D. Colman; C. R. Abernathy; Rachael E. Trimpert; Rebecca Moose; Gurinder Virdi; Kyle J. Roux; Mislen Bauer; Amyn M. Rojiani; Bernard L. Maria; David Muir; Margaret R. Wallace
Neurofibromatosis type 1 (NF1) is a common autosomal dominant condition characterized by benign tumor (neurofibroma) growth and increased risk of malignancy. Dermal neurofibromas, arising from superficial nerves, are primarily of cosmetic significance, whereas plexiform neurofibromas, typically larger and associated with deeply placed nerves, extend into contiguous tissues and may cause serious functional impairment. Malignant peripheral nerve sheath tumors (MPNSTs) seem to arise from plexiform neurofibromas. The NF1 gene, on chromosome segment 17q11.2, encodes a protein that has tumor suppressor function. Loss of heterozygosity (LOH) for NF1 has been reported in some neurofibromas and NF1 malignancies, but plexiform tumors have been poorly represented. Also, the studies did not always employ the same markers, preventing simple comparison of the frequency and extent of LOH among different tumor types. Our chromosome 17 LOH analysis in a cohort of three tumor types was positive for NF1 allele loss in 2/15 (13%) dermal neurofibromas, 4/10 (40%) plexiform neurofibromas, and 3/5 (60%) MPNSTs. Although the region of loss varied, the p arm (including TP53) was lost only in malignant tumors. The losses in the plexiform tumors all included sequences distal to NF1. No subtle TP53 mutations were found in any tumors. This study also reports the identification of both NF1 “hits” in plexiform tumors, further supporting the tumor suppressor role of the NF1 gene in this tumor type. Genes Chromosomes Cancer 28:425–431, 2000.