Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kyle K. Nishiyama is active.

Publication


Featured researches published by Kyle K. Nishiyama.


Journal of Bone and Mineral Research | 2009

Postmenopausal women with osteopenia have higher cortical porosity and thinner cortices at the distal radius and tibia than women with normal aBMD: an in vivo HR-pQCT study

Kyle K. Nishiyama; Heather M. Macdonald; Helen R. Buie; David A. Hanley; Steven K. Boyd

Increases in cortical porosity (Ct.Po) and decreases in cortical thickness (Ct.Th) are associated with increased bone fragility. The purpose of this study was to validate an autosegmentation method for high‐resolution peripheral quantitative computed tomography (HR‐pQCT) scans to measure Ct.Po and Ct.Th and use it to compare Ct.Po and Ct.Th between pre‐ and postmenopausal women with normal, osteopenic, and osteoporotic areal bone mineral density (aBMD). The Ct.Po and Ct.Th measurements were validated using cadaver forearms (n = 10) and micro‐computed tomography (µCT) as the gold standard. The analysis was applied to distal radius and tibia HR‐pQCT scans from a subset of participants from the Calgary, Alberta, cohort of the Canadian Multicentre Osteoporosis Study (n = 280, 18 to 90 years). Analysis of covariance compared Ct.Po and Ct.Th outcomes between 63 normal premenopausal (dual‐energy X‐ray absorptiometry femoral neck T‐score > −1), 87 normal postmenopausal, 121 osteopenic postmenopausal, and 9 osteoporotic postmenopausal women. Linear regression analysis and Bland‐Altman plots were used to assess the agreement between the HR‐pQCT and µCT measurements, resulting in r2 values of 0.80 for Ct.Po and 0.98 for Ct.Th. At both sites, Ct.Po was higher in postmenopausal (all groups) than in premenopausal women (3.2% to 12.9%, p < .001). Ct.Th was not significantly different between normal premenopausal and postmenopausal women at either site; however, both osteopenic and osteoporotic women had thinner (−12.8% to −30.3%, p < .01), more porous (2.1% to 8.1%, p < .001) cortices than normal postmenopausal women. Our method offers promise as a valuable tool to measure Ct.Po and Ct.Th in vivo and investigate associations among cortical bone structure, age, and disease status.


Journal of Bone and Mineral Research | 2011

Age-related patterns of trabecular and cortical bone loss differ between sexes and skeletal sites: a population-based HR-pQCT study.

Heather M. Macdonald; Kyle K. Nishiyama; Jian Kang; David A. Hanley; Steven K. Boyd

In this cross‐sectional study, we aimed to predict age‐related changes in bone microarchitecture and strength at the distal radius (DR) and distal tibia (DT) in 644 Canadian adults (n = 442 women and 202 men) aged 20 to 99 years. We performed a standard morphologic analysis of the DR and DT with high‐resolution peripheral quantitative computed tomography (pQCT) and used finite‐element analysis (FEA) to estimate bone strength (failure load) and the load distribution. We also calculated a DR load‐to‐strength ratio as an estimate of forearm fracture risk. Total bone area, which was 33% larger in young men at both sites, changed similarly with age in women and men at the DT but increased 17% more in men than in women at the DR (p < .001). Trabecular number and thickness (Tb.Th) were 7% to 20% higher in young men than in young women at both sites, and with the exception of Tb.Th at the DR, which declined more with age in men (−16%) than in women (−2%, p < .01), the age‐related decline in these outcomes was similar in women and in men. In the cortex, porosity (Ct.Po) was 31% to 44% lower in young women than in young men but increased 92% to 176% more with age in women than in men (p < .001). The DR cortex carried 14% more load in young women than in young men, and the percentage of load carried by the DR cortex did not change with age in women but declined by 17% in men (p < .01). FEA‐estimated bone strength was 34% to 47% greater in young men, but the predicted change with age was similar in both sexes. In contrast, the load‐to‐strength ratio increased 27% more in women than in men with age (p < .01). These results highlight important site‐ and sex‐specific differences in patterns of age‐related bone loss. In particular, the trends for less periosteal expansion, more porous cortices, and a greater percentage of load carried by the DR cortex in women may underpin sex differences in forearm fracture risk.


Journal of Bone and Mineral Research | 2013

Rapid cortical bone loss in patients with chronic kidney disease.

Thomas L. Nickolas; Emily M. Stein; Elzbieta Dworakowski; Kyle K. Nishiyama; Mafo Komandah-Kosseh; Chiyuan A. Zhang; Donald J. McMahon; Xiaowei S. Liu; Stephanie Boutroy; Serge Cremers; Elizabeth Shane

Chronic kidney disease (CKD) patients may have high rates of bone loss and fractures, but microarchitectural and biochemical mechanisms of bone loss in CKD patients have not been fully described. In this longitudinal study of 53 patients with CKD Stages 2 to 5D, we used dual‐energy X‐ray absorptiometry (DXA), high‐resolution peripheral quantitative computed tomography (HRpQCT), and biochemical markers of bone metabolism to elucidate effects of CKD on the skeleton. Median follow‐up was 1.5 years (range 0.9 to 4.3 years); bone changes were annualized and compared with baseline. By DXA, there were significant declines in areal bone mineral density (BMD) of the total hip and ultradistal radius: −1.3% (95% confidence interval [CI] −2.1 to −0.6) and −2.4% (95% CI −4.0 to −0.9), respectively. By HRpQCT at the distal radius, there were significant declines in cortical area, density, and thickness and increases in porosity: −2.9% (95% CI −3.7 to −2.2), −1.3% (95% CI −1.6 to −0.6), −2.8% (95% CI −3.6 to −1.9), and +4.2% (95% CI 2.0 to 6.4), respectively. Radius trabecular area increased significantly: +0.4% (95% CI 0.2 to 0.6), without significant changes in trabecular density or microarchitecture. Elevated time‐averaged levels of parathyroid hormone (PTH) and bone turnover markers predicted cortical deterioration. Higher levels of serum 25‐hydroxyvitamin D predicted decreases in trabecular network heterogeneity. These data suggest that significant cortical loss occurs with CKD, which is mediated by hyperparathyroidism and elevated turnover. Future investigations are required to determine whether these cortical losses can be attenuated by treatments that reduce PTH levels and remodeling rates.


Journal of Bone and Mineral Research | 2012

Cortical porosity is higher in boys compared with girls at the distal radius and distal tibia during pubertal growth: An HR-pQCT study

Kyle K. Nishiyama; Heather M. Macdonald; Sarah Moore; Tak Fung; Steven K. Boyd; Heather A. McKay

The aim of this study was to determine the sex‐ and maturity‐related differences in bone microstructure and estimated bone strength at the distal radius and distal tibia in children and adolescents. We used high‐resolution pQCT to measure standard morphological parameters in addition to cortical porosity (Ct.Po) and estimated bone strength by finite element analysis. Participants ranged in age from 9 to 22 years (n = 212 girls and n = 186 boys) who were scanned annually for either one (11%) or two (89%) years at the radius and for one (15%), two (39%), or three (46%) years at the tibia. Participants were grouped by the method of Tanner into prepubertal, early pubertal, peripubertal, and postpubertal groups. At the radius, peri‐ and postpubertal girls had higher cortical density (Ct.BMD; 9.4% and 7.4%, respectively) and lower Ct.Po (–118% and–56%, respectively) compared with peri‐ and postpubertal boys (all p < 0.001). Peri‐ and postpubertal boys had higher trabecular bone volume ratios (p < 0.001) and larger cortical cross‐sectional areas (p < 0.05, p < 0.001) when compared with girls. Based upon the load‐to‐strength ratio (failure load/estimated fall force), boys had lower risk of fracture than girls at every stage except during early puberty. Trends at the tibia were similar to the radius with differences between boys and girls in Ct.Po (p < 0.01) and failure load (p < 0.01) at early puberty. Across pubertal groups, within sex, the most mature girls and boys had higher Ct.BMD and lower Ct.Po than their less mature peers (prepuberty) at both the radius and tibia. Girls in early, peri‐, and postpubertal groups and boys in peri‐ and postpubertal groups had higher estimates of bone strength compared with their same‐sex prepubertal peers (p < 0.001). These results provide insight into the sex‐ and maturity‐related differences in bone microstructure and estimated bone strength.


Osteoporosis International | 2013

Women with previous fragility fractures can be classified based on bone microarchitecture and finite element analysis measured with HR-pQCT

Kyle K. Nishiyama; Heather M. Macdonald; David A. Hanley; Steven K. Boyd

SummaryHigh-resolution peripheral quantitative computed tomography (HR-pQCT) measurements of distal radius and tibia bone microarchitecture and finite element (FE) estimates of bone strength performed well at classifying postmenopausal women with and without previous fracture. The HR-pQCT measurements outperformed dual energy x-ray absorptiometry (DXA) at classifying forearm fractures and fractures at other skeletal sites.IntroductionAreal bone mineral density (aBMD) is the primary measurement used to assess osteoporosis and fracture risk; however, it does not take into account bone microarchitecture, which also contributes to bone strength. Thus, our objective was to determine if bone microarchitecture measured with HR-pQCT and FE estimates of bone strength could classify women with and without low-trauma fractures.MethodsWe used HR-pQCT to assess bone microarchitecture at the distal radius and tibia in 44 postmenopausal women with a history of low-trauma fracture and 88 age-matched controls from the Calgary cohort of the Canadian Multicentre Osteoporosis Study (CaMos) study. We estimated bone strength using FE analysis and simulated distal radius aBMD from the HR-pQCT scans. Femoral neck (FN) and lumbar spine (LS) aBMD were measured with DXA. We used support vector machines (SVM) and a tenfold cross-validation to classify the fracture cases and controls and to determine accuracy.ResultsThe combination of HR-pQCT measures of microarchitecture and FE estimates of bone strength had the highest area under the receiver operating characteristic (ROC) curve of 0.82 when classifying forearm fractures compared to an area under the curve (AUC) of 0.71 from DXA-derived aBMD of the forearm and 0.63 from FN and spine DXA. For all fracture types, FE estimates of bone strength at the forearm alone resulted in an AUC of 0.69.ConclusionModels based on HR-pQCT measurements of bone microarchitecture and estimates of bone strength performed better than DXA-derived aBMD at classifying women with and without prior fracture. In future, these models may improve prediction of individuals at risk of low-trauma fracture.


Journal of Biomechanics | 2013

Proximal femur bone strength estimated by a computationally fast finite element analysis in a sideways fall configuration

Kyle K. Nishiyama; S. Gilchrist; Pierre Guy; Peter A. Cripton; Steven K. Boyd

Finite element (FE) analysis based on quantitative computed tomography (QCT) images is an emerging tool to estimate bone strength in a specific patient or specimen; however, it is limited by the computational power required and the associated time required to generate and solve the models. Thus, our objective was to develop a fast, validated method to estimate whole bone structural stiffness and failure load in addition to a sensitivity analysis of varying boundary conditions. We performed QCT scans on twenty fresh-frozen proximal femurs (age: 77±13 years) and mechanically tested the femurs in a configuration that simulated a sideways fall on the hip. We used custom software to generate the FE models with boundary conditions corresponding to the mechanical tests and solved the linear models to estimate bone structural stiffness and estimated failure load. For the sensitivity analysis, we varied the internal rotation angle of the femoral neck from -30° to 45° at 15° intervals and estimated structural stiffness at each angle. We found both the FE estimates of structural stiffness (R(2)=0.89, p<0.01) and failure load (R(2)=0.81, p<0.01) to be in high agreement with the values found by mechanical testing. An important advantage of these methods was that the models of approximately 500,000 elements took less than 11 min to solve using a standard desktop workstation. In this study we developed and validated a method to quickly and accurately estimate proximal femur structural stiffness and failure load using QCT-driven FE methods.


Current Osteoporosis Reports | 2013

Clinical Imaging of Bone Microarchitecture with HR-pQCT

Kyle K. Nishiyama; Elizabeth Shane

Osteoporosis, a disease characterized by loss of bone mass and structural deterioration, is currently diagnosed by dual-energy x-ray absorptiometry (DXA). However, DXA does not provide information about bone microstructure, which is a key determinant of bone strength. Recent advances in imaging permit the assessment of bone microstructure in vivo using high-resolution peripheral quantitative computed tomography (HR-pQCT). From these data, novel image processing techniques can be applied to characterize bone quality and strength. To date, most HR-pQCT studies are cross-sectional comparing subjects with and without fracture. These studies have shown that HR-pQCT is capable of discriminating fracture status independent of DXA. Recent longitudinal studies present new challenges in terms of analyzing the same region of interest and multisite calibrations. Careful application of analysis techniques and educated clinical interpretation of HR-pQCT results have improved our understanding of various bone-related diseases and will no doubt continue to do so in the future.


Journal of Bone and Mineral Research | 2014

Skeletal structure in postmenopausal women with osteopenia and fractures is characterized by abnormal trabecular plates and cortical thinning.

Emily M. Stein; Anna Kepley; Marcella D. Walker; Thomas L. Nickolas; Kyle K. Nishiyama; Bin Zhou; X. Sherry Liu; Donald J. McMahon; Chiyuan Zhang; Stephanie Boutroy; Felicia Cosman; Jeri W. Nieves; X. Edward Guo; Elizabeth Shane

The majority of fragility fractures occur in women with osteopenia rather than osteoporosis as determined by dual‐energy X‐ray absorptiometry (DXA). However, it is difficult to identify which women with osteopenia are at greatest risk. We performed this study to determine whether osteopenic women with and without fractures had differences in trabecular morphology and biomechanical properties of bone. We hypothesized that women with fractures would have fewer trabecular plates, less trabecular connectivity, and lower stiffness. We enrolled 117 postmenopausal women with osteopenia by DXA (mean age 66 years; 58 with fragility fractures and 59 nonfractured controls). All had areal bone mineral density (aBMD) measured by DXA. Trabecular and cortical volumetric bone mineral density (vBMD), trabecular microarchitecture, and cortical porosity were measured by high‐resolution peripheral computed tomography (HR‐pQCT) of the distal radius and tibia. HR‐pQCT scans were subjected to finite element analysis to estimate whole bone stiffness and individual trabecula segmentation (ITS) to evaluate trabecular type (as plate or rod), orientation, and connectivity. Groups had similar age, race, body mass index (BMI), and mean T‐scores. Fracture subjects had lower cortical and trabecular vBMD, thinner cortices, and thinner, more widely separated trabeculae. By ITS, fracture subjects had fewer trabecular plates, less axially aligned trabeculae, and less trabecular connectivity. Whole bone stiffness was lower in women with fractures. Cortical porosity did not differ. Differences in cortical bone were found at both sites, whereas trabecular differences were more pronounced at the radius. In summary, postmenopausal women with osteopenia and fractures had lower cortical and trabecular vBMD; thinner, more widely separated and rodlike trabecular structure; less trabecular connectivity; and lower whole bone stiffness compared with controls, despite similar aBMD by DXA. Our results suggest that in addition to trabecular and cortical bone loss, changes in plate and rod structure may be important mechanisms of fracture in postmenopausal women with osteopenia.


Journal of The American Society of Nephrology | 2014

Kidney Transplantation with Early Corticosteroid Withdrawal: Paradoxical Effects at the Central and Peripheral Skeleton

Sapna P. Iyer; Lucas E. Nikkel; Kyle K. Nishiyama; Elzbieta Dworakowski; Serge Cremers; Chiyuan Zhang; Donald J. McMahon; Stephanie Boutroy; X. Sherry Liu; Lloyd E. Ratner; David J. Cohen; X. Edward Guo; Elizabeth Shane; Thomas L. Nickolas

The use of early corticosteroid withdrawal (ECSW) protocols after kidney transplantation has become common, but the effects on fracture risk and bone quality are unclear. We enrolled 47 first-time adult transplant recipients managed with ECSW into a 1-year study to evaluate changes in bone mass, microarchitecture, biomechanical competence, and remodeling with dual energy x-ray absorptiometry (DXA), high-resolution peripheral quantitative computed tomography (HRpQCT), parathyroid hormone (PTH) levels, and bone turnover markers obtained at baseline and 3, 6, and 12 months post-transplantation. Compared with baseline, 12-month areal bone mineral density by DXA did not change significantly at the spine and hip, but it declined significantly at the 1/3 and ultradistal radii (2.2% and 2.9%, respectively; both P<0.001). HRpQCT of the distal radius revealed declines in cortical area, density, and thickness (3.9%, 2.1%, and 3.1%, respectively; all P<0.001), trabecular density (4.4%; P<0.001), and stiffness and failure load (3.1% and 3.5%, respectively; both P<0.05). Findings were similar at the tibia. Increasing severity of hyperparathyroidism was associated with increased cortical losses. However, loss of trabecular bone and bone strength were most severe at the lowest and highest PTH levels. In summary, ECSW was associated with preservation of bone mineral density at the central skeleton; however, it was also associated with progressive declines in cortical and trabecular bone density at the peripheral skeleton. Cortical decreases related directly to PTH levels, whereas the relationship between PTH and trabecular bone decreases was bimodal. Studies are needed to determine whether pharmacologic agents that suppress PTH will prevent cortical and trabecular losses and post-transplant fractures.


The Journal of Clinical Endocrinology and Metabolism | 2016

Advanced Glycation Endproducts and Bone Material Strength in Type 2 Diabetes

Jessica R. Furst; Leonardo C. Bandeira; Wen-Wei Fan; Sanchita Agarwal; Kyle K. Nishiyama; Donald J. McMahon; Elzbieta Dworakowski; Hongfeng Jiang; Shonni J. Silverberg; Mishaela R. Rubin

CONTEXT Skeletal deterioration, leading to an increased risk of fracture, is a known complication of type 2 diabetes mellitus (T2D). Yet plausible mechanisms to account for skeletal fragility in T2D have not been clearly established. OBJECTIVE The objective of the study was to determine whether bone material properties, as measured by reference point indentation, and advanced glycation endproducts (AGEs), as determined by skin autofluorescence (SAF), are related in patients with T2D. DESIGN This was a cross-sectional study. SETTING The study was conducted at a tertiary medical center. PATIENTS Sixteen postmenopausal women with T2D and 19 matched controls participated in the study. MAIN OUTCOME MEASURES Bone material strength index (BMSi) by in vivo reference point indentation, AGE accumulation by SAF, and circulating bone turnover markers were measured. RESULTS BMSi was reduced by 9.2% in T2D (P = .02) and was inversely associated with the duration of T2D (r = -0.68, P = .004). Increased SAF was associated with reduced BMSi (r = -0.65, P = .006) and lower bone formation marker procollagen type 1 amino-terminal propeptide (r = -0.63, P = .01) in T2D, whereas no associations were seen in controls. SAF accounted for 26% of the age-adjusted variance in BMSi in T2D (P = .03). CONCLUSIONS Bone material properties are impaired in postmenopausal women with T2D as determined by reference point indentation. The results suggest a role for the accumulation of AGEs to account for inferior BMSi in T2D.

Collaboration


Dive into the Kyle K. Nishiyama's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heather M. Macdonald

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas L. Nickolas

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge