Kyle K. Pitchers
University of Michigan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kyle K. Pitchers.
The Journal of Neuroscience | 2013
Kyle K. Pitchers; Vincent Vialou; Eric J. Nestler; Steven R. Laviolette; Michael N. Lehman; Lique M. Coolen
Drugs of abuse induce neuroplasticity in the natural reward pathway, specifically the nucleus accumbens (NAc), thereby causing development and expression of addictive behavior. Recent evidence suggests that natural rewards may cause similar changes in the NAc, suggesting that drugs may activate mechanisms of plasticity shared with natural rewards, and allowing for unique interplay between natural and drug rewards. In this study, we demonstrate that sexual experience in male rats when followed by short or prolonged periods of loss of sex reward causes enhanced amphetamine reward, indicated by sensitized conditioned place preference for low-dose (0.5 mg/kg) amphetamine. Moreover, the onset, but not the longer-term expression, of enhanced amphetamine reward was correlated with a transient increase in dendritic spines in the NAc. Next, a critical role for the transcription factor ΔFosB in sex experience-induced enhanced amphetamine reward and associated increases in dendritic spines on NAc neurons was established using viral vector gene transfer of the dominant-negative binding partner ΔJunD. Moreover, it was demonstrated that sexual experience-induced enhanced drug reward, ΔFosB, and spinogenesis are dependent on mating-induced dopamine D1 receptor activation in the NAc. Pharmacological blockade of D1 receptor, but not D2 receptor, in the NAc during sexual behavior attenuated ΔFosB induction and prevented increased spinogenesis and sensitized amphetamine reward. Together, these findings demonstrate that drugs of abuse and natural reward behaviors act on common molecular and cellular mechanisms of plasticity that control vulnerability to drug addiction, and that this increased vulnerability is mediated by ΔFosB and its downstream transcriptional targets.
PLOS ONE | 2012
Kyle K. Pitchers; Susanne Schmid; Andrea R. Di Sebastiano; Xu Wang; Steven R. Laviolette; Michael N. Lehman; Lique M. Coolen
Natural reward and drugs of abuse converge upon the mesolimbic system which mediates motivation and reward behaviors. Drugs induce neural adaptations in this system, including transcriptional, morphological, and synaptic changes, which contribute to the development and expression of drug-related memories and addiction. Previously, it has been reported that sexual experience in male rats, a natural reward behavior, induces similar neuroplasticity in the mesolimbic system and affects natural reward and drug-related behavior. The current study determined whether sexual experience causes long-lasting changes in mating, or ionotropic glutamate receptor trafficking or function in the nucleus accumbens (NAc), following 3 different reward abstinence periods: 1 day, 1 week, or 1 month after final mating session. Male Sprague Dawley rats mated during 5 consecutive days (sexual experience) or remained sexually naïve to serve as controls. Sexually experienced males displayed facilitation of initiation and performance of mating at each time point. Next, intracellular and membrane surface expression of N-methyl-D-aspartate (NMDA: NR1 subunit) and α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA: GluA1, GluA2 subunits) receptors in the NAc was determined using a bis(sulfosuccinimidyl)suberate (BS3) protein cross-linking assay followed by Western Blot analysis. NR1 expression was increased at 1 day abstinence both at surface and intracellular, but decreased at surface at 1 week of abstinence. GluA2 was increased intracellularly at 1 week and increased at the surface after 1 month of abstinence. Finally, whole-cell patch clamp electrophysiological recordings determined reduced AMPA/NMDA ratio of synaptic currents in NAc shell neurons following stimulation of cortical afferents in sexually experienced males after all reward abstinence periods. Together, these data show that sexual experience causes long-term alterations in glutamate receptor expression and function in the NAc. Although not identical, this sex experience-induced neuroplasticity has similarities to that caused by psychostimulants, suggesting common mechanisms for reinforcement of natural and drug reward.
Neuropsychopharmacology | 2015
Lindsay M. Yager; Kyle K. Pitchers; Shelly B. Flagel; Terry E. Robinson
A discrete cue associated with intravenous injections of cocaine acquires greater control over motivated behavior in some rats (‘sign-trackers’, STs) than others (‘goal-trackers’, GTs). It is not known, however, if such variation generalizes to cues associated with other drugs. We asked, therefore, whether a discrete cue (a light) associated with the intravenous administration of an opioid drug (the short-acting mu receptor agonist, remifentanil) acquires incentive motivational properties differently in STs and GTs, as indicated by tests of Pavlovian conditioned approach and conditioned reinforcement. Consistent with studies using cocaine, STs approached a classically conditioned opioid cue more readily than GTs, and in a test of conditioned reinforcement worked more avidly to get it. Interestingly, STs and GTs did not differ in the acquisition of a conditioned orienting response. In addition, the performance of conditioned approach behavior, but not conditioned orientation, was attenuated by pretreatment with the dopamine receptor antagonist, flupenthixol, into the core of the nucleus accumbens. Lastly, food and opioid cues engaged similar amygdalo–striatal–thalamic circuitry to a much greater extent in STs than GTs, as indicated by Fos expression. Taken together, these data demonstrate that, similar to food and cocaine cues: (1) a discrete opioid cue attains greater incentive motivational value in STs than GTs; (2) the attribution of incentive motivational properties to an opioid cue is dopamine dependent; and (3) an opioid cue engages the so-called ‘motive circuit’ only if it is imbued with incentive salience.
The Journal of Neuroscience | 2014
Kyle K. Pitchers; Caroline M. Coppens; Lauren N. Beloate; Jonathan Fuller; Sandy Van; Karla S. Frohmader; Steven R. Laviolette; Michael N. Lehman; Lique M. Coolen
Natural reward and drugs of abuse converge on the mesolimbic pathway and activate common mechanism of neural plasticity in the nucleus accumbens. Chronic exposure to opiates induces plasticity in dopaminergic neurons of the ventral tegmental area (VTA), which regulates morphine reward tolerance. Here, we test the hypotheses that mating-induced release of endogenous opioids in the VTA causes morphological changes of VTA dopamine cells in male rats, which in-turn regulate the long-term expression of experience-induced reinforcement of sexual behavior. First, sexual experience decreased VTA dopamine soma size 1 and 7 days, but not 30 days after the last mating session. This effect was blocked with naloxone before each mating session; thus, VTA dopamine cell plasticity was dependent on action of endogenous opioids. In turn, VTA plasticity was associated with altered opiate reward, as sexually experienced males did not form conditioned place preference for 0.5 mg/kg morphine. Next, it was determined whether endogenous opioid action mediates sexual reward and memory in male rats treated with naloxone during mating experience, either systemically or intra-VTA. Naloxone did not prevent the initial experience-induced facilitation of sexual behavior over repeated mating sessions, or conditioned place preference for mating. However, naloxone treatment attenuated the longer-term expression of experience-induced facilitation of sexual behavior and neural activation in mesolimbic areas induced by mating-associated conditioned cues. Together, these data demonstrate that endogenous opioids during mating induce neural plasticity in VTA dopamine neurons that appear critical for morphine reward and long-term memory for natural reward behavior.
Behavioural Brain Research | 2015
Kyle K. Pitchers; Shelly B. Flagel; Elizabeth G. O’Donnell; Leah C. Solberg Woods; Martin Sarter; Terry E. Robinson
There is considerable individual variation in the propensity of animals to attribute incentive salience to discrete reward cues, but to date most of this research has been conducted in male rats. The purpose of this study was to determine whether sex influences the propensity to attribute incentive salience to a food cue, using rats from two different outbred strains (Sprague-Dawley [SD] and Heterogeneous Stock [HS]). The motivational value of a food cue was assessed in two ways: (i) by the ability of the cue to elicit approach toward it and (ii) by its ability to act as a conditioned reinforcer. We found that female SD rats acquired Pavlovian conditioned approach behavior slightly faster than males, but no sex difference was detected in HS rats, and neither strain showed a sex difference in asymptotic performance of approach behavior. Moreover, female approach behavior did not differ across estrous cycle. Compared to males, females made more active responses during the test for conditioned reinforcement, although they made more inactive responses as well. We conclude that although there are small sex differences in performance on these tasks, these are probably not due to a notable sex difference in the propensity to attribute incentive salience to a food cue.
Behavioural Brain Research | 2017
Kyle K. Pitchers; Taylor R. Wood; Cari J. Skrzynski; Terry E. Robinson; Martin Sarter
HighlightsA classically conditioned auditory cue elicited cue‐induced drug seeking in STs and GTs.Intermittent Access cocaine self‐admin produced escalation of drug intake.Intermittent Access cocaine self‐admin produced robust stimulus control over self‐admin behavior.Auditory cocaine cue elicited cocaine‐seeking but did not disrupt performance of a sustained attention task.Cocaine availability, contingent on the discriminative stimulus or non‐contingently, severely disrupted attention task performance. ABSTRACT In humans, reward cues, including drug cues in individuals experiencing addiction, are especially effective in biasing attention towards them, so much so they can disrupt ongoing task performance. It is not known, however, whether this happens in rats. To address this question, we developed a behavioral paradigm to assess the capacity of an auditory drug (cocaine) cue to evoke cocaine‐seeking behavior, thus distracting thirsty rats from performing a well‐learned sustained attention task (SAT) to obtain a water reward. First, it was determined that an auditory cocaine cue (tone‐CS) reinstated drug‐seeking equally in sign‐trackers (STs) and goal‐trackers (GTs), which otherwise vary in the propensity to attribute incentive salience to a localizable drug cue. Next, we tested the ability of an auditory cocaine cue to disrupt performance on the SAT in STs and GTs. Rats were trained to self‐administer cocaine intravenously using an Intermittent Access self‐administration procedure known to produce a progressive increase in motivation for cocaine, escalation of intake, and strong discriminative stimulus control over drug‐seeking behavior. When presented alone, the auditory discriminative stimulus elicited cocaine‐seeking behavior while rats were performing the SAT, but it was not sufficiently disruptive to impair SAT performance. In contrast, if cocaine was available in the presence of the cue, or when administered non‐contingently, SAT performance was severely disrupted. We suggest that performance on a relatively automatic, stimulus‐driven task, such as the basic version of the SAT used here, may be difficult to disrupt with a drug cue alone. A task that requires more top‐down cognitive control may be needed.
The Journal of Neuroscience | 2017
Kyle K. Pitchers; Kyra B. Phillips; Jonte L. Jones; Terry E. Robinson; Martin Sarter
Stimuli associated with taking drugs are notorious instigators of relapse. There is, however, considerable variation in the motivational properties of such stimuli, both as a function of the individual and the nature of the stimulus. The behavior of some individuals (sign trackers, STs) is especially influenced by cues paired with reward delivery, perhaps because they are prone to process information via dopamine-dependent, cue-driven, incentive salience systems. Other individuals (goal trackers, GTs) are better able to incorporate higher-order contextual information, perhaps because of better executive/attentional control over behavior, which requires frontal cortical cholinergic activity. We hypothesized, therefore, that a cue that “sets the occasion” for drug taking (a discriminative stimulus, DS) would reinstate cocaine seeking more readily in GTs than STs and that this would require intact cholinergic neurotransmission. To test this, male STs and GTs were trained to self-administer cocaine using an intermittent access schedule with periods of cocaine availability and unavailability signaled by a DS+ and a DS−, respectively. Thereafter, half of the rats received an immunotoxic lesion that destroyed 40–50% of basal forebrain cholinergic neurons and later, after extinction training, were tested for the ability of noncontingent presentations of the DS+ to reinstate cocaine seeking behavior. The DS+ was much more effective in reinstating cocaine seeking in GTs than STs and this effect was abolished by cholinergic losses despite the fact that all rats continued to orient to the DS+. We conclude that vulnerability to relapse involves interactions between individual cognitive–motivational biases and the form of the drug cue encountered. SIGNIFICANCE STATEMENT The most predictable outcome of a diagnosis of addiction is a high chance for relapse. When addicts encounter cues previously associated with drug, their attention may be unduly attracted to such cues and these cues can evoke motivational states that instigate and maintain drug-seeking behavior. Although sign-tracking rats were previously demonstrated to exhibit greater relapse vulnerability to Pavlovian drug cues paired with drug delivery, here, we demonstrate that their counterparts, the goal trackers, are more vulnerable if the drug cue acts to signal drug availability and that the forebrain cholinergic system mediates such vulnerability. Given the importance of contextual cues for triggering relapse and the human cognitive–cholinergic capacity for the processing of such cues, goal trackers model essential aspects of relapse vulnerability.
The Journal of Neuroscience | 2017
Ajeesh Koshy Cherian; Aaron Kucinski; Kyle K. Pitchers; Brittney Yegla; Vinay Parikh; Youngsoo Kim; Paulina Valuskova; Sarika Gurnani; Craig W. Lindsley; Randy D. Blakely; Martin Sarter
Some rats [sign-trackers (STs)] are prone to attribute incentive salience to reward cues, which can manifest as a propensity to approach and contact pavlovian cues, and for addiction-like behavior. STs also exhibit poor attentional performance, relative to goal-trackers (GTs), which is associated with attenuated acetylcholine (ACh) levels in prefrontal cortex (Paolone et al., 2013). Here, we demonstrate a cellular mechanism, linked to ACh synthesis, that accounts for attenuated cholinergic capacity in STs. First, we found that electrical stimulation of the basal forebrain increased cortical choline transporter (CHT)-mediated choline transport in GTs, paralleled by a redistribution of CHTs to the synaptic plasma membrane. Neither increases in choline uptake nor translocation of CHTs occurred in STs. Second, and consistent with uptake/translocation alterations, STs demonstrated a reduced ability to support cortical ACh release in vivo compared with GTs after reverse-dialysis to elevate extracellular potassium levels. Third, rats were significantly more likely to develop sign-tracking behavior if treated systemically before pavlovian conditioned approach training with the CHT inhibitor VU6001221. Consistent with its proposed mechanisms, administration of VU6001221 attenuated potassium-evoked ACh levels in prefrontal cortex measured with in vivo microdialysis. We propose that loss of CHT-dependent activation of cortical cholinergic activity in STs degrades top-down executive control over behavior, producing a bias for bottom-up or stimulus-driven attention. Such an attentional bias contributes to nonadaptive reward processing and thus identifies a novel mechanism that can support psychopathology, including addiction. SIGNIFICANCE STATEMENT The vulnerability for addiction-like behavior has been associated with psychological traits, such as the propensity to attribute incentive salience to reward cues that is modeled in rats by sign-tracking behavior. Sign-trackers tend to approach and contact cues associated with reward, whereas their counterparts, the goal-trackers, have a preference for approaching the location of the reward. Here, we show that the capacity of presynaptic cholinergic synapses to respond to stimulation by elevating presynaptic choline uptake and releasing acetylcholine is attenuated in sign-trackers. Furthermore, pharmacological inhibition of choline transport induced sign-tracking behavior. Our findings suggest that reduced levels of cholinergic neuromodulation can mediate an attentional bias toward reward-related cues, thereby allowing such cues to exert relatively greater control over behavior.
European Journal of Neuroscience | 2017
Kyle K. Pitchers; Louisa F. Kane; Youngsoo Kim; Terry E. Robinson; Martin Sarter
Discrete Pavlovian reward cues acquire more potent incentive motivational properties (incentive salience) in some animals (sign‐trackers; STs) compared to others (goal‐trackers; GTs). Conversely, GTs appear to be better than STs in processing more complex contextual cues, perhaps reflecting their relatively greater bias for goal‐directed cue processing. Here, we investigated the activity of two major prefrontal neuromodulatory input systems, dopamine (DA) and acetylcholine (ACh), in response to a discrete Pavlovian cue that was previously paired with cocaine administration in STs and GTs. Rats underwent Pavlovian training in which light cue presentations were either paired or unpaired with an intravenous cocaine infusion. Following a 10‐day abstinence period, prefrontal dialysates were collected in STs and GTs during cue presentations in the absence of cocaine. In STs, the cue previously paired with cocaine significantly increased prefrontal DA levels. DA levels remained elevated over baseline across multiple cue presentation blocks, and DA levels and approaches to the cue were significantly correlated. In STs, ACh levels were unaffected by cue presentations. In contrast, in GTs, presentations of the cocaine cue increased prefrontal ACh, but not DA, levels. GTs oriented towards the cue at rates similar to STs, but they did not approach it and elevated ACh levels did not correlate with conditioned orientation. The results indicate a double dissociation between the role of prefrontal DA and ACh in STs and GTs, and suggest that these phenotypes will be useful for studying the role of neuromodulator systems in mediating opponent behavioural‐cognitive styles.
Learning & Memory | 2018
Kyle K. Pitchers; Martin Sarter; Terry E. Robinson
Environmental cues associated with rewards can acquire motivational properties. However, there is considerable variation in the extent to which a reward cue gains motivational control over behavior, depending on the individual and the form of the cue. When a discrete cue is paired with food reward, it acquires greater control over motivated behavior in some rats (sign-trackers, STs) than others (goal-trackers, GTs) as indicated by the propensity to approach the cue, the willingness to work to obtain it, and its ability to reinstate reward-seeking behavior. Here, we review studies that employ this ST/GT animal model to investigate characteristics of individuals that are especially susceptible to reward cue-elicited behavior and the involvement of dopamine and acetylcholine neuromodulator systems in the susceptibility to cue-induced drug relapse. First, we discuss individual differences in the attribution of incentive salience to different forms of reward cues and the involvement of the mesolimbic dopamine system. We then discuss individual differences in cognitive/attentional control and the contributions of the cholinergic system in processing reward cues. It is suggested that in STs a propensity to attribute motivational properties to a drug cue is combined with poor attentional control in the face of these cues, making them particularly vulnerable to transition from casual/experimental patterns of drug use to addiction and to cue-induced relapse.