Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kylie D. Mason is active.

Publication


Featured researches published by Kylie D. Mason.


Nature Medicine | 2013

ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets

Andrew J. Souers; Joel D. Leverson; Erwin R. Boghaert; Scott L. Ackler; Nathaniel D. Catron; Jun Chen; Brian D Dayton; H. Ding; Sari H. Enschede; Wayne J. Fairbrother; David C. S. Huang; Sarah G. Hymowitz; Sha Jin; Seong Lin Khaw; Peter Kovar; Lloyd T. Lam; Jackie Lee; Heather Maecker; Kennan Marsh; Kylie D. Mason; Michael J. Mitten; Paul Nimmer; Anatol Oleksijew; Chang H. Park; Cheol-Min Park; Darren C. Phillips; Andrew W. Roberts; Deepak Sampath; John F. Seymour; Morey L. Smith

Proteins in the B cell CLL/lymphoma 2 (BCL-2) family are key regulators of the apoptotic process. This family comprises proapoptotic and prosurvival proteins, and shifting the balance toward the latter is an established mechanism whereby cancer cells evade apoptosis. The therapeutic potential of directly inhibiting prosurvival proteins was unveiled with the development of navitoclax, a selective inhibitor of both BCL-2 and BCL-2–like 1 (BCL-XL), which has shown clinical efficacy in some BCL-2–dependent hematological cancers. However, concomitant on-target thrombocytopenia caused by BCL-XL inhibition limits the efficacy achievable with this agent. Here we report the re-engineering of navitoclax to create a highly potent, orally bioavailable and BCL-2–selective inhibitor, ABT-199. This compound inhibits the growth of BCL-2–dependent tumors in vivo and spares human platelets. A single dose of ABT-199 in three patients with refractory chronic lymphocytic leukemia resulted in tumor lysis within 24 h. These data indicate that selective pharmacological inhibition of BCL-2 shows promise for the treatment of BCL-2–dependent hematological cancers.


Cell | 2007

Programmed anuclear cell death delimits platelet life span.

Kylie D. Mason; Marina R. Carpinelli; Jamie I. Fletcher; Janelle E. Collinge; Adrienne A. Hilton; Sarah Ellis; Priscilla N. Kelly; Paul G. Ekert; Donald Metcalf; Andrew W. Roberts; David C. S. Huang; Benjamin T. Kile

Platelets are anuclear cytoplasmic fragments essential for blood clotting and wound healing. Despite much speculation, the factors determining their life span in the circulation are unknown. We show here that an intrinsic program for apoptosis controls platelet survival and dictates their life span. Pro-survival Bcl-x(L) constrains the pro-apoptotic activity of Bak to maintain platelet survival, but as Bcl-x(L) degrades, aged platelets are primed for cell death. Genetic ablation or pharmacological inactivation of Bcl-x(L) reduces platelet half-life and causes thrombocytopenia in a dose-dependent manner. Deletion of Bak corrects these defects, and platelets from Bak-deficient mice live longer than normal. Thus, platelets are, by default, genetically programmed to die by apoptosis. The antagonistic balance between Bcl-x(L) and Bak constitutes a molecular clock that determines platelet life span: this represents an important paradigm for cellular homeostasis, and has profound implications for the diagnosis and treatment of disorders that affect platelet number and function.


Blood | 2009

Two distinct pathways regulate platelet phosphatidylserine exposure and procoagulant function

Simone M. Schoenwaelder; Yuping Yuan; Emma C. Josefsson; M. J. D. White; Yu Yao; Kylie D. Mason; Lorraine A. O'Reilly; Katya J. Henley; Akiko Ono; Sarah Tzu-Feng Hsiao; Abbey Willcox; Andrew W. Roberts; David C. S. Huang; Hatem H. Salem; Benjamin T. Kile; Shaun P. Jackson

Procoagulant platelets exhibit hallmark features of apoptotic cells, including membrane blebbing, microvesiculation, and phosphatidylserine (PS) exposure. Although platelets possess many well-known apoptotic regulators, their role in regulating the procoagulant function of platelets is unclear. To clarify this, we investigated the consequence of removing the essential mediators of apoptosis, Bak and Bax, or directly inducing apoptosis with the BH3 mimetic compound ABT-737. Treatment of platelets with ABT-737 triggered PS exposure and a marked increase in thrombin generation in vitro. This increase in procoagulant function was Bak/Bax- and caspase-dependent, but it was unaffected by inhibitors of platelet activation or by chelating extracellular calcium. In contrast, agonist-induced platelet procoagulant function was unchanged in Bak(-/-)Bax(-/-) or caspase inhibitor-treated platelets, but it was completely eliminated by extracellular calcium chelators or inhibitors of platelet activation. These studies show the existence of 2 distinct pathways regulating the procoagulant function of platelets.


Blood | 2011

Bcl-xL–inhibitory BH3 mimetics can induce a transient thrombocytopathy that undermines the hemostatic function of platelets

Simone M. Schoenwaelder; Kate E. Jarman; Elizabeth E. Gardiner; My Hua; Jianlin Qiao; Michael J. White; Emma C. Josefsson; Imala Alwis; Akiko Ono; Abbey Willcox; Robert K. Andrews; Kylie D. Mason; Hatem H. Salem; David C. S. Huang; Benjamin T. Kile; Andrew W. Roberts; Shaun P. Jackson

BH3 mimetics are a new class of proapo-ptotic anticancer agents that have shown considerable promise in preclinical animal models and early-stage human trials. These agents act by inhibiting the pro-survival function of one or more Bcl-2-related proteins. Agents that inhibit Bcl-x(L) induce rapid platelet death that leads to thrombocytopenia; however, their impact on the function of residual circulating platelets remains unclear. In this study, we demonstrate that the BH3 mimetics, ABT-737 or ABT-263, induce a time- and dose-dependent decrease in platelet adhesive function that correlates with ectodomain shedding of the major platelet adhesion receptors, glycoprotein Ibα and glycoprotein VI, and functional down-regulation of integrin α(IIb)β(3). Analysis of platelets from mice treated with higher doses of BH3 mimetics revealed the presence of a subpopulation of circulating platelets undergoing cell death that have impaired activation responses to soluble agonists. Functional analysis of platelets by intravital microscopy revealed a time-dependent defect in platelet aggregation at sites of vascular injury that correlated with an increase in tail bleeding time. Overall, these studies demonstrate that Bcl-x(L)-inhibitory BH3 mimetics not only induce thrombocytopenia but also a transient thrombocytopathy that can undermine the hemostatic function of platelets.


Journal of Experimental Medicine | 2011

Megakaryocytes possess a functional intrinsic apoptosis pathway that must be restrained to survive and produce platelets

Emma C. Josefsson; Chloé James; Katya J. Henley; Marlyse A. Debrincat; Kelly L. Rogers; Mark R. Dowling; M. J. D. White; Elizabeth A. Kruse; Rachael M. Lane; Sarah Ellis; Paquita Nurden; Kylie D. Mason; Lorraine A. O’Reilly; Andrew W. Roberts; Donald Metcalf; David C. S. Huang; Benjamin T. Kile

Deletion of Bak and Bax, the effectors of mitochondrial apoptosis, does not affect platelet production, however, loss of prosurvival Bcl-xL results in megakaryocyte apoptosis and failure of platelet shedding.


Proceedings of the National Academy of Sciences of the United States of America | 2008

In vivo efficacy of the Bcl-2 antagonist ABT-737 against aggressive Myc-driven lymphomas

Kylie D. Mason; Cassandra J. Vandenberg; Clare L. Scott; Andrew Wei; Suzanne Cory; David C. S. Huang; Andrew W. Roberts

Deregulated Myc expression drives many human cancers, including Burkitts lymphoma and a highly aggressive subset of diffuse large cell lymphomas. Myc-driven tumors often display resistance to chemotherapeutics because of acquisition of mutations that impair the apoptosis pathway regulated by the Bcl-2 protein family. Given the need to identify new therapies for such lymphomas, we have evaluated the efficacy of ABT-737, a small molecule that mimics the action of the BH3-only proteins, natural antagonists of the prosurvival Bcl-2 proteins. ABT-737 selectively targets certain prosurvival proteins (Bcl-2, Bcl-xL, and Bcl-w) but not others (Mcl-1 and A1). We treated mice transplanted with lymphomas derived either from Eμ-myc transgenic mice or Eμ-myc mice that also expressed an Eμ-bcl-2 transgene. As a single agent, ABT-737 significantly prolonged the survival of mice transplanted with the myc/bcl-2 lymphomas but was ineffective for the myc lymphomas, probably because of the relatively higher Mcl-1 levels found in the latter. Strikingly, when combined with low-dose cyclophosphamide, ABT-737 produced sustained disease-free survival of all animals transplanted with two of three myc/bcl-2 lymphomas tested. The combination therapy was also more effective against some myc lymphomas than treatment with either agent alone. Our data suggest that antagonism of Bcl-2 with small organic compounds is an attractive approach to enhance the efficacy of conventional therapy for the treatment of Myc-driven lymphomas that over-express this prosurvival molecule.


EMBO Reports | 2014

Mitochondrial apoptosis is dispensable for NLRP3 inflammasome activation but non‐apoptotic caspase‐8 is required for inflammasome priming

Ramanjaneyulu Allam; Kate E. Lawlor; Eric Chi-Wang Yu; Alison L Mildenhall; D M Moujalled; Rowena S. Lewis; Francine Ke; Kylie D. Mason; M. J. D. White; Katryn J. Stacey; Andreas Strasser; Lorraine A. O'Reilly; Warren S. Alexander; Benjamin T. Kile; David L. Vaux; James E. Vince

A current paradigm proposes that mitochondrial damage is a critical determinant of NLRP3 inflammasome activation. Here, we genetically assess whether mitochondrial signalling represents a unified mechanism to explain how NLRP3 is activated by divergent stimuli. Neither co‐deletion of the essential executioners of mitochondrial apoptosis BAK and BAX, nor removal of the mitochondrial permeability transition pore component cyclophilin D, nor loss of the mitophagy regulator Parkin, nor deficiency in MAVS affects NLRP3 inflammasome function. In contrast, caspase‐8, a caspase essential for death‐receptor‐mediated apoptosis, is required for efficient Toll‐like‐receptor‐induced inflammasome priming and cytokine production. Collectively, these results demonstrate that mitochondrial apoptosis is not required for NLRP3 activation, and highlight an important non‐apoptotic role for caspase‐8 in regulating inflammasome activation and pro‐inflammatory cytokine levels.


Proceedings of the National Academy of Sciences of the United States of America | 2010

BH3 mimetics antagonizing restricted prosurvival Bcl-2 proteins represent another class of selective immune modulatory drugs

Emma M. Carrington; Ingela Vikstrom; Amanda Light; Robyn M. Sutherland; Sarah L. Londrigan; Kylie D. Mason; David C. S. Huang; Andrew M. Lew; David M. Tarlinton

Death by apoptosis shapes tissue homeostasis. Apoptotic mechanisms are so universal that harnessing them for tailored immune intervention would seem challenging; however, the range and different expression levels of pro- and anti-apoptotic molecules among tissues offer hope that targeting only a subset of such molecules may be therapeutically useful. We examined the effects of the drug ABT-737, a mimetic of the killer BH3 domain of the Bcl-2 family of proteins that induces apoptosis by antagonizing Bcl-2, Bcl-XL, and Bcl-W (but not Mcl-1 and A1), on the mouse immune system. Treatment with ABT-737 reduced the numbers of selected lymphocyte and dendritic cell subpopulations, most markedly in lymph nodes. It inhibited the persistence of memory B cells, the establishment of newly arising bone marrow plasma cells, and the induction of a cytotoxic T cell response. Preexisting plasma cells and germinal centers were unaffected. Notably, ABT-737 was sufficiently immunomodulatory to allow long-term survival of pancreatic allografts, reversing established diabetes in this model. These results provide an insight into the selective mechanisms of immune cell survival and how this selectivity avails a different strategy for immune modulation.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Proapoptotic Bak and Bax guard against fatal systemic and organ-specific autoimmune disease

Kylie D. Mason; Ann Lin; Robb L; Emma C. Josefsson; Katya J. Henley; Daniel Gray; Benjamin T. Kile; Andrew W. Roberts; Andreas Strasser; David C. S. Huang; Paul Waring; Lorraine A. O'Reilly

Dysregulation of the “intrinsic” apoptotic pathway is associated with the development of cancer and autoimmune disease. Bak and Bax are two proapoptotic members of the Bcl-2 protein family with overlapping, essential roles in the intrinsic apoptotic pathway. Their activity is critical for the control of cell survival during lymphocyte development and homeostasis, best demonstrated by defects in thymic T-cell differentiation and peripheral lymphoid homeostasis caused by their combined loss. Because most bak−/−bax−/− mice die perinatally, the roles of Bax and Bak in immunological tolerance and prevention of autoimmune disease remain unclear. We show that mice reconstituted with a Bak/Bax doubly deficient hematopoietic compartment develop a fatal systemic lupus erythematosus-like autoimmune disease characterized by hypergammaglobulinemia, autoantibodies, lymphadenopathy, glomerulonephritis, and vasculitis. Importantly, these mice also develop a multiorgan autoimmune disease with autoantibodies against most solid glandular structures and evidence of glandular atrophy and necrotizing vasculitis. Interestingly, similar albeit less severe pathology was observed in mice containing a hematopoietic compartment deficient for only Bak, a phenotype reminiscent of the disease seen in patients with point mutations in BAK. These studies demonstrate a critical role for Bak and an ancillary role for Bax in safeguarding immunological tolerance and prevention of autoimmune disease. This suggests that direct activators of the intrinsic apoptotic pathway, such as BH3 mimetics, may be useful for treatment of diverse autoimmune diseases.


Blood | 2013

Low adhesion receptor levels on circulating platelets in patients with lymphoproliferative diseases before receiving Navitoclax (ABT-263)

Jianlin Qiao; Simone M. Schoenwaelder; Kylie D. Mason; Huy Tran; Amanda K. Davis; Zane Kaplan; Shaun P. Jackson; Benjamin T. Kile; Robert K. Andrews; Andrew W. Roberts; Elizabeth E. Gardiner

To the editor: Leukemia cells express high levels of Bcl-2[1][1] and BH3 mimetics that antagonize the prosurvival function of Bcl-2 and related proteins, thereby inducing apoptosis, are useful treatments for patients with chemotherapy-refractory leukemia.[2][2] BH3 mimetics such as ABT-737 and ABT-

Collaboration


Dive into the Kylie D. Mason's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

David C. S. Huang

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Benjamin T. Kile

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

David Ritchie

Royal Melbourne Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeff Szer

Royal Melbourne Hospital

View shared research outputs
Top Co-Authors

Avatar

Lorraine A. O'Reilly

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Andreas Strasser

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Cassandra J. Vandenberg

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Constantine S. Tam

Peter MacCallum Cancer Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge