Kylie E. Webster
Garvan Institute of Medical Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kylie E. Webster.
Journal of Experimental Medicine | 2009
Kylie E. Webster; Stacey N. Walters; Rachel Kohler; Tomas Mrkvan; Onur Boyman; Charles D. Surh; Shane T. Grey; Jonathan Sprent
Via a transcription factor, Foxp3, immunoregulatory CD4+CD25+ T cells (T reg cells) play an important role in suppressing the function of other T cells. Adoptively transferring high numbers of T reg cells can reduce the intensity of the immune response, thereby providing an attractive prospect for inducing tolerance. Extending our previous findings, we describe an in vivo approach for inducing rapid expansion of T reg cells by injecting mice with interleukin (IL)-2 mixed with a particular IL-2 monoclonal antibody (mAb). Injection of these IL-2–IL-2 mAb complexes for a short period of 3 d induces a marked (>10-fold) increase in T reg cell numbers in many organs, including the liver and gut as well as the spleen and lymph nodes, and a modest increase in the thymus. The expanded T reg cells survive for 1–2 wk and are highly activated and display superior suppressive function. Pretreating with the IL-2–IL-2 mAb complexes renders the mice resistant to induction of experimental autoimmune encephalomyelitis; combined with rapamycin, the complexes can also be used to treat ongoing disease. In addition, pretreating mice with the complexes induces tolerance to fully major histocompatibility complex–incompatible pancreatic islets in the absence of immunosuppression. Tolerance is robust and the majority of grafts are accepted indefinitely. The approach described for T reg cell expansion has clinical potential for treating autoimmune disease and promoting organ transplantation.
Journal of Experimental Medicine | 2004
Adrian Liston; Daniel Gray; Sylvie Lesage; Anne L. Fletcher; Judith Wilson; Kylie E. Webster; Hamish S. Scott; Richard L. Boyd; Leena Peltonen; Christopher C. Goodnow
Inactivation of the autoimmune regulator (Aire) gene causes a rare recessive disorder, autoimmune polyendocrine syndrome 1 (APS1), but it is not known if Aire-dependent tolerance mechanisms are susceptible to the quantitative genetic changes thought to underlie more common autoimmune diseases. In mice with a targeted mutation, complete loss of Aire abolished expression of an insulin promoter transgene in thymic epithelium, but had no effect in pancreatic islets or the testes. Loss of one copy of Aire diminished thymic expression of the endogenous insulin gene and the transgene, resulting in a 300% increase in islet-reactive CD4 T cells escaping thymic deletion in T cell receptor transgenic mice, and dramatically increased progression to diabetes. Thymic deletion induced by antigen under control of the thyroglobulin promoter was abolished in Aire homozygotes and less efficient in heterozygotes, providing an explanation for thyroid autoimmunity in APS1. In contrast, Aire deficiency had no effect on thymic deletion to antigen controlled by a systemic H-2K promoter. The sensitivity of Aire-dependent thymic deletion to small reductions in function makes this pathway a prime candidate for more subtle autoimmune quantitative trait loci, and suggests that methods to increase Aire activity would be a potent strategy to lower the incidence of organ-specific autoimmunity.
Journal of Immunology | 2009
François-Xavier Hubert; Sarah Kinkel; Pauline E. Crewther; Ping Cannon; Kylie E. Webster; Maire Link; Raivo Uibo; Moira K. O'Bryan; Anthony Meager; Simon P. Forehan; Gordon K. Smyth; Paert Peterson; William R. Heath; Hamish S. Scott
Autoimmune regulator (AIRE) is an important transcription regulator that mediates a role in central tolerance via promoting the “promiscuous” expression of tissue-specific Ags in the thymus. Although several mouse models of Aire deficiency have been described, none has analyzed the phenotype induced by a mutation that emulates the common 13-bp deletion in human APECED (autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy) by disrupting the first plant homeodomain in exon 8. Aire-deficient mice with a corresponding mutation showed some disturbance of the medullary epithelial compartment, but at the phenotypic level their T cell compartment appeared relatively normal in the thymus and periphery. An increase in the number of activated T cells was evident, and autoantibodies against several organs were detected. At the histological level, lymphocytic infiltration of several organs indicated the development of autoimmunity, although symptoms were mild and the quality of life for Aire-deficient mice appeared equivalent to wild-type littermates, with the exception of male infertility. Vβ and CDR3 length analysis suggested that each Aire-deficient mouse developed its own polyclonal autoimmune repertoire. Finally, given the prevalence of candidiasis in APECED patients, we examined the control of infection with Candida albicans in Aire-deficient mice. No increase in disease susceptibility was found for either oral or systemic infection. These observations support the view that additional genetic and/or environmental factors contribute substantially to the overt nature of autoimmunity associated with Aire mutations, even for mutations identical to those found in humans with APECED.
Journal of Immunology | 2008
François-Xavier Hubert; Sarah Kinkel; Kylie E. Webster; Ping Cannon; Pauline E. Crewther; Anna I. Proeitto; Li Wu; William R. Heath; Hamish S. Scott
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy is an autoimmune disorder caused by mutations in the autoimmune regulator gene AIRE. We examined the expression of Aire in different organs (thymus, spleen, and lymph nodes) in C57BL/6 mice, using a novel rat mAb, specific for murine Aire. Using flow cytometry, directly fluorochrome-labeled mAb revealed Aire expression in a rare thymic cellular subset that was CD45−, expressed low levels of Ly51, and was high for MHC-II and EpCam. This subset also expressed a specific pattern of costimulatory molecules, including CD40, CD80, and PD-L1. Immunohistochemical analysis revealed that Aire+ cells were specifically localized to the thymus or, more precisely, to the cortico-medulla junction and medulla, correlating with the site of negative selection. Although in agreement with previous studies, low levels of Aire mRNA was detected in all dendritic cell subtypes however lacZ staining, immunohistochemistry and flow cytometry failed to detect Aire protein. At a cellular level, Aire was expressed in perinuclear speckles within the nucleus. This report provides the first detailed analysis of Aire protein expression, highlighting the precise location at both the tissue and cellular level.
Mucosal Immunology | 2012
Jens Loebbermann; Hannah Thornton; Lydia R. Durant; Tim Sparwasser; Kylie E. Webster; Jonathan Sprent; Fiona J. Culley; Cecilia Johansson; Peter J. M. Openshaw
The inflammatory response to lung infections must be tightly regulated, enabling pathogen elimination while maintaining crucial gas exchange. Using recently described “depletion of regulatory T cell” (DEREG) mice, we found that selective depletion of regulatory T cells (Tregs) during acute respiratory syncytial virus (RSV) infection enhanced viral clearance but increased weight loss, local cytokine and chemokine release, and T-cell activation and cellular influx into the lungs. Conversely, inflammation was decreased when Treg numbers and activity were boosted using interleukin-2 immune complexes. Unexpectedly, lung (but not draining lymph node) Tregs from RSV-infected mice expressed granzyme B (GzmB), and bone marrow chimeric mice with selective loss of GzmB in the Treg compartment displayed markedly enhanced cellular infiltration into the lung after infection. A crucial role for GzmB-expressing Tregs has not hitherto been described in the lung or during acute infections, but may explain the inability of children with perforin/GzmB defects to regulate immune responses to infection. The effects of RSV infection in mice with defective immune regulation closely parallel the observed effects of RSV in children with bronchiolitis, suggesting that the pathogenesis of bronchiolitis may involve an inability to regulate virus-induced inflammation.
Journal of Immunology | 2009
Stacey N. Walters; Kylie E. Webster; Andrew P. R. Sutherland; Sandra Gardam; Joanna Groom; David Liuwantara; Eliana Mariño; Jessica E. Thaxton; Anita Weinberg; Fabienne Mackay; Robert Brink; Jonathon Sprent; Shane T. Grey
The cytokine B cell activation factor of the TNF family (BAFF) is considered to perform a proinflammatory function. This paradigm is particularly true for B cell-dependent immune responses; however the exact role for BAFF in regulating T cell immunity is ill-defined. To directly assess the effect of BAFF upon T cells, we analyzed T cell-dependent immune responses in BAFF-transgenic (Tg) mice. We found that T cell responses in BAFF-Tg mice are profoundly compromised, as indicated by their acceptance of islet allografts and delayed skin graft rejection. However, purified BAFF-Tg effector T cells could reject islet allografts with a normal kinetic, suggesting that the altered response did not relate to a defect in T cell function per se. Rather, we found that BAFF-Tg mice harbored an increased number of peripheral CD4+Foxp3+ T cells. A large proportion of the BAFF-expanded CD4+CD25+Foxp3+ regulatory T cells (Tregs) were CD62LlowCD103high and ICAM-1high, a phenotype consistent with an ability to home to inflammatory sites and prevent T cell effector responses. Indeed, depletion of the endogenous BAFF-Tg Tregs allowed allograft rejection to proceed, demonstrating that the increased Tregs were responsible for preventing alloimmunity. The ability of BAFF to promote Treg expansion was not T cell intrinsic, as Tregs did not express high levels of BAFF receptor 3, nor did excessive BAFF trigger NF-κB2 processing in Tregs. In contrast, we found that BAFF engendered Treg expansion through an indirect, B cell-dependent mechanism. Thus, under certain conditions, BAFF can play a surprising anti-inflammatory role in T cell biology by promoting the expansion of Treg cells.
Diabetes | 2011
Helen M. McGuire; Stacey N. Walters; Alexis Vogelzang; Carol M.Y. Lee; Kylie E. Webster; Jonathan Sprent; Daniel Christ; Shane T. Grey; Cecile King
OBJECTIVE Type 1 diabetes is an incurable chronic autoimmune disease. Although transplantation of pancreatic islets may serve as a surrogate source of insulin, recipients are subjected to a life of immunosuppression. Interleukin (IL)-21 is necessary for type 1 diabetes in NOD mice. We examined the efficacy of an IL-21–targeted therapy on prevention of diabetes in NOD mice, in combination with syngeneic islet transplantation. In addition, we assessed the role of IL-21 responsiveness in islet allograft rejection in mouse animal models. RESEARCH DESIGN AND METHODS NOD mice were treated with IL-21R/Fc, an IL-21–neutralizing chimeric protein. This procedure was combined with syngeneic islet transplantation to treat diabetic NOD mice. Survival of allogeneic islet grafts in IL-21R–deficient mice was also assessed. RESULTS Evidence is provided that IL-21 is continually required by the autoimmune infiltrate, such that insulitis was reduced and reversed and diabetes inhibited by neutralization of IL-21 at a late preclinical stage. Recovery from autoimmune diabetes was achieved by combining neutralization of IL-21 with islet transplantation. Furthermore, IL-21–responsiveness by CD8+ T-cells was sufficient to mediate islet allograft rejection. CONCLUSIONS Neutralization of IL-21 in NOD mice can inhibit diabetes, and when paired with islet transplantation, this therapeutic approach restored normoglycemia. The influence of IL-21 on a graft-mounted immune response was robust, since the absence of IL-21 signaling prevented islet allograft rejection. These findings suggest that therapeutic manipulation of IL-21 may serve as a suitable treatment for patients with type 1 diabetes.
Clinical and Experimental Immunology | 2007
Stefania Scarpino; A. Di Napoli; Antonella Stoppacciaro; M. Antonelli; Emanuela Pilozzi; Roberto Chiarle; Giorgio Palestro; Mirella Marino; Francesco Facciolo; Erino A. Rendina; Kylie E. Webster; Sarah Kinkel; Hamish S. Scott; Luigi Ruco
Expression of the autoimmune regulator gene (AIRE) and the presence of CD25+/forkhead box p3 (FoxP3)+ T regulatory (Treg) cells were investigated in histologically normal adult thymi and in thymomas using immunohistochemistry and quantitative real‐time polymerase chain reaction (PCR). In the normal thymus staining for AIRE was detected in the nucleus of some epithelial‐like cells located in the medulla; in thymomas AIRE‐positive cells were extremely rare and could be detected only in the areas of medullary differentiation of two B1 type, organoid thymomas. RNA was extracted from 36 cases of thymoma and 21 non‐neoplastic thymi obtained from 11 myasthenic (MG+) and 10 non‐myasthenic (MG–) patients. It was found that AIRE is 8·5‐fold more expressed in non‐neoplastic thymi than in thymomas (P = 0·01), and that the amount of AIRE transcripts present in the thymoma tissue are not influenced by the association with MG, nor by the histological type. A possible involvement of AIRE in the development of MG was suggested by the observation that medullary thymic epithelial cells isolated from AIRE‐deficient mice contain low levels of RNA transcripts for CHRNA 1, a gene coding for acetylcholine receptor. Expression of human CHRNA 1 RNA was investigated in 34 human thymomas obtained from 20 MG– patients and 14 MG+ patients. No significant difference was found in the two groups (thymoma MG+, CHRNA1 = 0·013 ± 0·03; thymoma MG‐, CHRNA1 = 0·01 ± 0·03). In normal and hyperplastic thymi CD25+/Foxp3+ cells were located mainly in the medulla, and their number was not influenced by the presence of MG. Foxp3+ and CD25+ cells were significantly less numerous in thymomas. A quantitative estimate of Treg cells revealed that the levels of Foxp3 RNA detected in non‐neoplastic thymi were significantly higher (P = 0·02) than those observed in 31 cases of thymomas. Our findings indicate that the tissue microenvironment of thymomas is defective in the expression of relevant functions that exert a crucial role in the negative selection of autoreactive lymphocytes.
Mucosal Immunology | 2014
Kylie E. Webster; Hee-Ok Kim; Konstantinos Kyparissoudis; Theresa M. Corpuz; Pinget Gv; Adam P. Uldrich; Robert Brink; Gabrielle T. Belz; Jae Ho Cho; Dale I. Godfrey; Jonathan Sprent
Natural killer T (NKT) cells are innate-like T cells that rapidly recognize pathogens and produce cytokines that shape the ensuing immune response. IL-17-producing NKT cells are enriched in barrier tissues, such as the lung, skin, and peripheral lymph nodes, and the factors that maintain this population in the periphery have not been elucidated. Here we show that NKT17 cells deviate from other NKT cells in their survival requirements. In contrast to conventional NKT cells that are maintained by IL-15, RORγt+ NKT cells are IL-15 independent and instead rely completely on IL-7. IL-7 initiates a T-cell receptor-independent (TCR-independent) expansion of NKT17 cells, thus supporting their homeostasis. Without IL-7, survival is dramatically impaired, yet residual cells remain lineage committed with no downregulation of RORγt evident. Their preferential response to IL-7 does not reflect enhanced signaling through STAT proteins, but instead is modulated via the PI3K/AKT/mTOR signaling pathway. The ability to compete for IL-7 is dependent on high-density IL-7 receptor expression, which would promote uptake of low levels of IL-7 produced in the non-lymphoid sites of lung and skin. This dependence on IL-7 is also reported for RORγt+ innate lymphoid cells and CD4+ Th17 cells, and suggests common survival requirements for functionally similar cells.
Journal of The American Society of Nephrology | 2012
Tania S. Polhill; Geoff Yu Zhang; Min Hu; Andrew Sawyer; Jimmy Jianheng Zhou; Mitsuru Saito; Kylie E. Webster; Yingxiao Wang; Shane T. Grey; Jonathan Sprent; David C.H. Harris; Stephen I. Alexander; Y. M. Wang
Regulatory T cells (Tregs) help protect against autoimmune renal injury. The use of agonist antibodies and antibody/cytokine combinations to expand Tregs in vivo may have therapeutic potential for renal disease. Here, we investigated the effects of administering IL-2/IL-2Ab complexes in mice with adriamycin nephropathy, a model of proteinuric kidney disease that resembles human focal segmental glomerulosclerosis. Injecting IL-2/IL-2Ab complexes before or, to a lesser extent, after induction of disease promoted expansion of Tregs. Furthermore, administration of this complex was renoprotective, evidenced by improved renal function, maintenance of body weight, less histologic injury, and reduced inflammation. IL-2/IL-2Ab reduced serum IL-6 and renal expression of IL-6 and IL-17 but enhanced expression of IL-10 and Foxp3 in the spleen. In vitro, the addition of IL-2/IL-2Ab complexes induced rapid STAT-5 phosphorylation in CD4 T cells. In summary, these data suggest that inducing the expansion of Tregs by administering IL-2/IL-2Ab complexes is a possible strategy to treat renal disease.