Kylie L. Gorringe
Peter MacCallum Cancer Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kylie L. Gorringe.
Nature Genetics | 2008
Wen Qiu; Min Hu; Anita Sridhar; Ken Opeskin; Stephen B. Fox; Michail Shipitsin; Melanie Trivett; Ella R. Thompson; Manasa Ramakrishna; Kylie L. Gorringe; Kornelia Polyak; Izhak Haviv; Ian G. Campbell
There is increasing evidence showing that the stromal cells surrounding cancer epithelial cells, rather than being passive bystanders, might have a role in modifying tumor outgrowth. The molecular basis of this aspect of carcinoma etiology is controversial. Some studies have reported a high frequency of genetic aberrations in carcinoma-associated fibroblasts (CAFs), whereas other studies have reported very low or zero mutation rates. Resolution of this contentious area is of critical importance in terms of understanding both the basic biology of cancer as well as the potential clinical implications of CAF somatic alterations. We undertook genome-wide copy number and loss of heterozygosity (LOH) analysis of CAFs derived from breast and ovarian carcinomas using a 500K SNP array platform. Our data show conclusively that LOH and copy number alterations are extremely rare in CAFs and cannot be the basis of the carcinoma-promoting phenotypes of breast and ovarian CAFs.
PLOS ONE | 2006
Matthew R. E. Symonds; Neil J. Gemmell; Tamsin L. Braisher; Kylie L. Gorringe; Mark A. Elgar
We examined the publication records of a cohort of 168 life scientists in the field of ecology and evolutionary biology to assess gender differences in research performance. Clear discrepancies in publication rate between men and women appear very early in their careers and this has consequences for the subsequent citation of their work. We show that a recently proposed index designed to rank scientists fairly is in fact strongly biased against female researchers, and advocate a modified index to assess men and women on a more equitable basis.
Bioinformatics | 2012
Jason Li; Richard Lupat; Kaushalya C. Amarasinghe; Ella R. Thompson; Maria A. Doyle; Georgina L. Ryland; Richard W. Tothill; Saman K. Halgamuge; Ian G. Campbell; Kylie L. Gorringe
Motivation: In light of the increasing adoption of targeted resequencing (TR) as a cost-effective strategy to identify disease-causing variants, a robust method for copy number variation (CNV) analysis is needed to maximize the value of this promising technology. Results: We present a method for CNV detection for TR data, including whole-exome capture data. Our method calls copy number gains and losses for each target region based on normalized depth of coverage. Our key strategies include the use of base-level log-ratios to remove GC-content bias, correction for an imbalanced library size effect on log-ratios, and the estimation of log-ratio variations via binning and interpolation. Our methods are made available via CONTRA (COpy Number Targeted Resequencing Analysis), a software package that takes standard alignment formats (BAM/SAM) and outputs in variant call format (VCF4.0), for easy integration with other next-generation sequencing analysis packages. We assessed our methods using samples from seven different target enrichment assays, and evaluated our results using simulated data and real germline data with known CNV genotypes. Availability and implementation: Source code and sample data are freely available under GNU license (GPLv3) at http://contra-cnv.sourceforge.net/ Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.
Clinical Cancer Research | 2011
Michael S. Anglesio; Joshy George; Hagen Kulbe; Michael Friedlander; Danny Rischin; Charlotte Lemech; Jeremy Power; Jermaine Coward; Prue Cowin; Colin M. House; Probir Chakravarty; Kylie L. Gorringe; Ian G. Campbell; Aikou Okamoto; Michael J. Birrer; David Huntsman; Anna de Fazio; Steve E. Kalloger; Frances R. Balkwill; C. Blake Gilks; David Bowtell
Purpose: Ovarian clear cell adenocarcinoma (OCCA) is an uncommon histotype that is generally refractory to platinum-based chemotherapy. We analyze here the most comprehensive gene expression and copy number data sets, to date, to identify potential therapeutic targets of OCCA. Experimental Design: Gene expression and DNA copy number were carried out using primary human OCCA tumor samples, and findings were confirmed by immunohistochemistry on tissue microarrays. Circulating interleukin (IL) 6 levels were measured in serum from patients with OCCA or high-grade serous cancers and related to progression-free and overall survival. Two patients were treated with sunitinib, and their therapeutic responses were measured clinically and by positron emission tomography. Results: We find specific overexpression of the IL6-STAT3-HIF (interleukin 6-signal transducer and activator of transcription 3-hypoxia induced factor) pathway in OCCA tumors compared with high-grade serous cancers. Expression of PTHLH and high levels of circulating IL6 in OCCA patients may explain the frequent occurrence of hypercalcemia of malignancy and thromboembolic events in OCCA. We describe amplification of several receptor tyrosine kinases, most notably MET, suggesting other potential therapeutic targets. We report sustained clinical and functional imaging responses in two OCCA patients with chemotherapy-resistant disease who were treated with sunitinib, thus showing significant parallels with renal clear cell cancer. Conclusions: Our findings highlight important therapeutic targets in OCCA, suggest that more extensive clinical trials with sunitinib in OCCA are warranted, and provide significant impetus to the growing realization that OCCA is molecularly and clinically distinct to other forms of ovarian cancer. Clin Cancer Res; 17(8); 2538–48. ©2011 AACR.
Clinical Cancer Research | 2007
Kylie L. Gorringe; Sharoni Jacobs; Ella R. Thompson; Anita Sridhar; Wen Qiu; David Y. H. Choong; Ian G. Campbell
Purpose: Genetic changes in sporadic ovarian cancer are relatively poorly characterized compared with other tumor types. We have evaluated the use of high-resolution whole genome arrays for the genetic profiling of epithelial ovarian cancer. Experimental Design: We have evaluated 31 primary ovarian cancers and matched normal DNA for loss of heterozygosity and copy number alterations using 500K single nucleotide polymorphism arrays. Results: In addition to identifying the expected large-scale genomic copy number changes, >380 small regions of copy number gain or loss (<500 kb) were identified among the 31 tumors, including 33 regions of high-level gain (>5 copies) and 27 homozygous deletions. The existence of such a high frequency of small regions exhibiting copy number alterations had not been previously suspected because earlier genomic array platforms lacked comparable resolution. Interestingly, many of these regions harbor known cancer genes. For example, one tumor harbored a 350-kb high-level amplification centered on FGFR1 and three tumors showed regions of homozygous loss 109 to 216 kb in size involving the RB1 tumor suppressor gene only. Conclusions: These data suggest that novel cancer genes may be located within the other identified small regions of copy number alteration. Analysis of the number of copy number breakpoints and the distribution of the small regions of copy number change indicate high levels of structural chromosomal genetic instability in ovarian cancer.
American Journal of Pathology | 2001
Yataro Daigo; Suet-Feung Chin; Kylie L. Gorringe; Lynda G. Bobrow; Bruce A.J. Ponder; Paul Pharoah; Carlos Caldas
We have developed a protocol for degenerate oligonucleotide-primed-polymerase chain reaction-based array comparative genomic hybridization (array CGH) that, when combined with a laser microdissection technique, allows the analysis of cancer cell populations isolated from routine, formalin-fixed, paraffin-embedded tissue samples. Comparison of copy number changes detected by degenerate oligonucleotide-primed-polymerase chain reaction-based array CGH to those detected by conventional array CGH or fluorescence in situ hybridization, demonstrated that amplifications can be reliably detected. Using a genomic microarray containing 57 oncogenes, we screened a total of 28 breast cancer samples and obtained a detailed amplicon profile that is the most comprehensive to date in human breast cancer. The array CGH method described here will allow the genetic analysis of paraffin-embedded human cancer materials for example in the context of clinical trials.
Journal of Clinical Investigation | 2012
Kathryn M. Kinross; Karen G. Montgomery; Margarete Kleinschmidt; Paul Waring; Ivan Ivetac; Anjali Tikoo; Mirette Saad; Lauren M. Hare; Vincent Roh; Theo Mantamadiotis; Karen E. Sheppard; Georgina L. Ryland; Ian G. Campbell; Kylie L. Gorringe; James G. Christensen; Carleen Cullinane; Rodney J. Hicks; Richard B. Pearson; Ricky W. Johnstone; Grant A. McArthur; Wayne A. Phillips
Mutations in the gene encoding the p110α subunit of PI3K (PIK3CA) that result in enhanced PI3K activity are frequently observed in human cancers. To better understand the role of mutant PIK3CA in the initiation or progression of tumorigenesis, we generated mice in which a PIK3CA mutation commonly detected in human cancers (the H1047R mutation) could be conditionally knocked into the endogenous Pik3ca locus. Activation of this mutation in the mouse ovary revealed that alone, Pik3caH1047R induced premalignant hyperplasia of the ovarian surface epithelium but no tumors. Concomitantly, we analyzed several human ovarian cancers and found PIK3CA mutations coexistent with KRAS and/or PTEN mutations, raising the possibility that a secondary defect in a co-regulator of PI3K activity may be required for mutant PIK3CA to promote transformation. Consistent with this notion, we found that Pik3caH1047R mutation plus Pten deletion in the mouse ovary led to the development of ovarian serous adenocarcinomas and granulosa cell tumors. Both mutational events were required for early, robust Akt activation. Pharmacological inhibition of PI3K/mTOR in these mice delayed tumor growth and prolonged survival. These results demonstrate that the Pik3caH1047R mutation with loss of Pten is enough to promote ovarian cell transformation and that we have developed a model system for studying possible therapies.
British Journal of Cancer | 2000
J M Davidson; Kylie L. Gorringe; S-F Chin; Béatrice Orsetti; C Besret; Celine Courtay-Cahen; I Roberts; Charles Theillet; Carlos Caldas; Paw Edwards
The extensive chromosome rearrangements of breast carcinomas must contribute to tumour development, but have been largely intractable to classical cytogenetic banding. We report here the analysis by 24-colour karyotyping and comparative genomic hybridization (CGH) of 19 breast carcinoma cell lines and one normal breast epithelial cell line, which provide model examples of karyotype patterns and translocations present in breast carcinomas. The CGH was compared with CGH of 106 primary breast cancers. The lines varied from perfectly diploid to highly aneuploid. Translocations were very varied and over 98% were unbalanced. The most frequent in the carcinomas were 8;11 in five lines; and 8;17, 1;4 and 1;10 in four lines. The most frequently involved chromosome was 8. Several lines showed complex multiply-translocated chromosomes. The very aneuploid karyotypes appeared to fall into two groups that evolved by different routes: one that steadily lost chromosomes and at one point doubled their entire karyotype; and another that steadily gained chromosomes, together with abnormalities. All karyotypes fell within the range seen in fresh material and CGH confirmed that the lines were broadly representative of fresh tumours. The karyotypes provide a resource for the cataloguing and analysis of translocations in these tumours, accessible at http://www.path.cam.ac.uk/~pawefish.
Genes, Chromosomes and Cancer | 2005
Kylie L. Gorringe; Alex Boussioutas; David Bowtell
Gastric cancer (GC) frequently displays changes in DNA copy number, but few studies have precisely correlated specific genetic alterations with changes in gene expression. We undertook both array comparative genomic hybridization (aCGH) and expression analyses of 20 primary GCs using a cDNA microarray with more than 9,300 genes. Diverse clinical and histopathologic tumor subtypes, including signet‐ring tumors and tumors at the gastroesophageal junction, were analyzed. All tumors showed changes in gene copy number, with the majority showing multiple changes. Regions of gain and loss were generally consistent with previous cytogenetic reports; however, the use of aCGH greatly increased the resolution of measured genomic change. By comparing gene expression and high‐resolution measurement of gene copy number directly, we were able to identify several regions of high‐level gain associated with substantially increased gene expression that have not been defined previously in GC. Novel candidate oncogenes included dual‐specificity tyrosine‐(Y)‐phosphorylation‐regulated kinase 2 (DYRK2) and protein tyrosine kinase 7 (PTK7).
PLOS ONE | 2010
Manasa Ramakrishna; Louise H. Williams; Samantha E. Boyle; Jennifer L. Bearfoot; Anita Sridhar; Terence P. Speed; Kylie L. Gorringe; Ian G. Campbell
Ovarian cancer is a disease characterised by complex genomic rearrangements but the majority of the genes that are the target of these alterations remain unidentified. Cataloguing these target genes will provide useful insights into the disease etiology and may provide an opportunity to develop novel diagnostic and therapeutic interventions. High resolution genome wide copy number and matching expression data from 68 primary epithelial ovarian carcinomas of various histotypes was integrated to identify genes in regions of most frequent amplification with the strongest correlation with expression and copy number. Regions on chromosomes 3, 7, 8, and 20 were most frequently increased in copy number (>40% of samples). Within these regions, 703/1370 (51%) unique gene expression probesets were differentially expressed when samples with gain were compared to samples without gain. 30% of these differentially expressed probesets also showed a strong positive correlation (r≥0.6) between expression and copy number. We also identified 21 regions of high amplitude copy number gain, in which 32 known protein coding genes showed a strong positive correlation between expression and copy number. Overall, our data validates previously known ovarian cancer genes, such as ERBB2, and also identified novel potential drivers such as MYNN, PUF60 and TPX2.