Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kym F. Faull is active.

Publication


Featured researches published by Kym F. Faull.


Journal of Pharmacology and Experimental Therapeutics | 2008

Curcumin Structure-Function, Bioavailability, and Efficacy in Models of Neuroinflammation and Alzheimer's Disease

Aynun N. Begum; Mychica R. Jones; Giselle P. Lim; Takashi Morihara; Peter Kim; Dennis D. Heath; Cheryl L. Rock; Mila A. Pruitt; Fusheng Yang; Beverly Hudspeth; Shuxin Hu; Kym F. Faull; Bruce Teter; Greg M. Cole; Sally A. Frautschy

Curcumin can reduce inflammation and neurodegeneration, but its chemical instability and metabolism raise concerns, including whether the more stable metabolite tetrahydrocurcumin (TC) may mediate efficacy. We examined the antioxidant, anti-inflammatory, or anti-amyloidogenic effects of dietary curcumin and TC, either administered chronically to aged Tg2576 APPsw mice or acutely to lipopolysaccharide (LPS)-injected wild-type mice. Despite dramatically higher drug plasma levels after TC compared with curcumin gavage, resulting brain levels of parent compounds were similar, correlating with reduction in LPS-stimulated inducible nitric-oxide synthase, nitrotyrosine, F2 isoprostanes, and carbonyls. In both the acute (LPS) and chronic inflammation (Tg2576), TC and curcumin similarly reduced interleukin-1β. Despite these similarities, only curcumin was effective in reducing amyloid plaque burden, insoluble β-amyloid peptide (Aβ), and carbonyls. TC had no impact on plaques or insoluble Aβ, but both reduced Tris-buffered saline-soluble Aβ and phospho-c-Jun NH2-terminal kinase (JNK). Curcumin but not TC prevented Aβ aggregation. The TC metabolite was detected in brain and plasma from mice chronically fed the parent compound. These data indicate that the dienone bridge present in curcumin, but not in TC, is necessary to reduce plaque deposition and protein oxidation in an Alzheimers model. Nevertheless, TC did reduce neuroinflammation and soluble Aβ, effects that may be attributable to limiting JNK-mediated transcription. Because of its favorable safety profile and the involvement of misfolded proteins, oxidative damage, and inflammation in multiple chronic degenerative diseases, these data relating curcumin dosing to the blood and tissue levels required for efficacy should help translation efforts from multiple successful preclinical models.


Journal of Biological Chemistry | 2000

Combined Serum Paraoxonase Knockout/Apolipoprotein E Knockout Mice Exhibit Increased Lipoprotein Oxidation and Atherosclerosis

Diana M. Shih; Yu-Rong Xia; Xu-Ping Wang; Elizabeth R. Miller; Lawrence W. Castellani; Ganesamoorthy Subbanagounder; Hilde Cheroutre; Kym F. Faull; Judith A. Berliner; Joseph L. Witztum; Aldons J. Lusis

Serum paraoxonase (PON1), present on high density lipoprotein, may inhibit low density lipoprotein (LDL) oxidation and protect against atherosclerosis. We generated combined PON1 knockout (KO)/apolipoprotein E (apoE) KO and apoE KO control mice to compare atherogenesis and lipoprotein oxidation. Early lesions were examined in 3-month-old mice fed a chow diet, and advanced lesions were examined in 6-month-old mice fed a high fat diet. In both cases, the PON1 KO/apoE KO mice exhibited significantly more atherosclerosis (50–71% increase) than controls. We examined LDL oxidation and clearancein vivo by injecting human LDL into the mice and following its turnover. LDL clearance was faster in the double KO mice as compared with controls. There was a greater rate of accumulation of oxidized phospholipid epitopes and a greater accumulation of LDL-immunoglobulin complexes in the double KO mice than in controls. Furthermore, the amounts of three bioactive oxidized phospholipids were elevated in the endogenous intermediate density lipoprotein/LDL of double KO mice as compared with the controls. Finally, the expression of heme oxygenase-1, peroxisome proliferator-activated receptor γ, and oxidized LDL receptors were elevated in the livers of double KO mice as compared with the controls. These data demonstrate that PON1 deficiency promotes LDL oxidation and atherogenesis in apoE KO mice.


Journal of Proteome Research | 2008

The Proteomes of Human Parotid and Submandibular/Sublingual Gland Salivas Collected as the Ductal Secretions

Paul C. Denny; Fred K. Hagen; Markus Hardt; Lujian Liao; Weihong Yan; Martha Arellanno; Sara Bassilian; Gurrinder S. Bedi; Pinmannee Boontheung; Daniel Cociorva; Claire Delahunty; Trish Denny; Jason Dunsmore; Kym F. Faull; Joyce Gilligan; Mireya Gonzalez-Begne; Frédéric Halgand; Steven C. Hall; Xuemei Han; Bradley S. Henson; Johannes A. Hewel; Shen Hu; Sherry Jeffrey; Jiang Jiang; Joseph A. Loo; Rachel R. Ogorzalek Loo; Daniel Malamud; James E. Melvin; Olga Miroshnychenko; Mahvash Navazesh

Saliva is a body fluid with important functions in oral and general health. A consortium of three research groups catalogued the proteins in human saliva collected as the ductal secretions: 1166 identifications--914 in parotid and 917 in submandibular/sublingual saliva--were made. The results showed that a high proportion of proteins that are found in plasma and/or tears are also present in saliva along with unique components. The proteins identified are involved in numerous molecular processes ranging from structural functions to enzymatic/catalytic activities. As expected, the majority mapped to the extracellular and secretory compartments. An immunoblot approach was used to validate the presence in saliva of a subset of the proteins identified by mass spectrometric approaches. These experiments focused on novel constituents and proteins for which the peptide evidence was relatively weak. Ultimately, information derived from the work reported here and related published studies can be used to translate blood-based clinical laboratory tests into a format that utilizes saliva. Additionally, a catalogue of the salivary proteome of healthy individuals allows future analyses of salivary samples from individuals with oral and systemic diseases, with the goal of identifying biomarkers with diagnostic and/or prognostic value for these conditions; another possibility is the discovery of therapeutic targets.


Developmental Cell | 2013

Combined deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible with postnatal development

Meelad M. Dawlaty; Achim Breiling; Thuc Le; Günter Raddatz; M. Inmaculada Barrasa; Albert W. Cheng; Qing Gao; Benjamin E. Powell; Zhe Li; Mingjiang Xu; Kym F. Faull; Frank Lyko; Rudolf Jaenisch

Tet enzymes (Tet1/2/3) convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) in various embryonic and adult tissues. Mice mutant for either Tet1 or Tet2 are viable, raising the question of whether these enzymes have overlapping roles in development. Here we have generated Tet1 and Tet2 double-knockout (DKO) embryonic stem cells (ESCs) and mice. DKO ESCs remained pluripotent but were depleted of 5hmC and caused developmental defects in chimeric embryos. While a fraction of double-mutant embryos exhibited midgestation abnormalities with perinatal lethality, viable and overtly normal Tet1/Tet2-deficient mice were also obtained. DKO mice had reduced 5hmC and increased 5mC levels and abnormal methylation at various imprinted loci. Nevertheless, animals of both sexes were fertile, with females having smaller ovaries and reduced fertility. Our data show that loss of both enzymes is compatible with development but promotes hypermethylation and compromises imprinting. The data also suggest a significant contribution of Tet3 to hydroxylation of 5mC during development.


Cell Stem Cell | 2014

Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal

Deqiang Sun; Min Luo; Mira Jeong; Benjamin Rodriguez; Zheng Xia; Rebecca Hannah; Hui Wang; Thuc M. Le; Kym F. Faull; Rui Chen; Hongcang Gu; Christoph Bock; Alexander Meissner; Berthold Göttgens; Gretchen J. Darlington; Wei Li; Margaret A. Goodell

To investigate the cell-intrinsic aging mechanisms that erode the function of somatic stem cells during aging, we have conducted a comprehensive integrated genomic analysis of young and aged cells. We profiled the transcriptome, DNA methylome, and histone modifications of young and old murine hematopoietic stem cells (HSCs). Transcriptome analysis indicated reduced TGF-β signaling and perturbation of genes involved in HSC proliferation and differentiation. Aged HSCs exhibited broader H3K4me3 peaks across HSC identity and self-renewal genes and showed increased DNA methylation at transcription factor binding sites associated with differentiation-promoting genes combined with a reduction at genes associated with HSC maintenance. Altogether, these changes reinforce HSC self-renewal and diminish differentiation, paralleling phenotypic HSC aging behavior. Ribosomal biogenesis emerged as a particular target of aging with increased transcription of ribosomal protein and RNA genes and hypomethylation of rRNA genes. This data set will serve as a reference for future epigenomic analysis of stem cell aging.


Journal of Biological Chemistry | 1999

Structural Identification of a Novel Pro-inflammatory Epoxyisoprostane Phospholipid in Mildly Oxidized Low Density Lipoprotein

Andrew D. Watson; Ganesamoorthy Subbanagounder; Derek S. Welsbie; Kym F. Faull; Mohamad Navab; Michael E. Jung; Alan M. Fogelman; Judith A. Berliner

One of the earliest steps in the development of the atherosclerotic lesion is the accumulation of monocyte/macrophages within the vessel wall. Oxidized lipids present in minimally modified-low density lipoproteins (MM-LDL) contribute to this process by activating endothelial cells to express monocyte-specific adhesion molecules and chemoattractant factors. A major focus of our group has been the isolation and characterization of the biologically active oxidized lipids in MM-LDL. We have previously characterized three oxidized phospholipids present in MM-LDL, atherosclerotic lesions of fat fed rabbits, and autoxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (Ox-PAPC) that induced human aortic endothelial cells to adhere human monocytesin vitro. We have used sequential normal and reverse phase-high performance liquid chromatography to isolate various isomers of an oxidized phospholipid from autoxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine. The fatty acid in the sn-2 position of this biologically active isomer and its dehydration product was released by phospholipase A2 and characterized. Hydrogenation with platinum(IV) oxide/hydrogen suggested a cyclic moiety, and reduction with sodium borohydride suggested two reducible oxygen-containing groups in the molecule. The fragmentation pattern produced by electrospray ionization-collision induced dissociation-tandem mass spectrometry was consistent with a molecule resembling an E-ring prostaglandin with an epoxide at the 5,6 position. The structure of this lipid was confirmed by proton nuclear magnetic resonance spectroscopy analysis of the free fatty acid isolated from the dehydration product ofm/z 828.5. Based on these studies, we arrived at the structure of the biologically active oxidized phospholipids as 1-palmitoyl-2-(5,6-epoxyisoprostane E2)-sn-glycero-3-phosphocholine. The identification of this molecule adds epoxyisoprostanes to the growing list of biologically active isoprostanes.


Current Eye Research | 1995

Tear lipocalins bind a broad array of lipid ligands

Ben J. Glasgow; Adil R. Abduragimov; Zohreh Toossi Farahbakhsh; Kym F. Faull; Wayne L. Hubbell

To identify the native ligands of tear lipocalins, tear proteins were separated by size exclusion chromatography and the lipid content in the major protein fractions identified. Lipids extracted from native tears and purified tear lipocalins comigrated with fatty acids, fatty alcohols, phospholipids, glycolipids, and cholesterol on thin layer chromatograms. Abundant stearic and palmitic acids as well as cholesterol, and lesser amounts of lauric acid were specifically identified in extracts of purified lipocalins by gas chromatography-mass spectroscopy. A preliminary study of the ligand-protein interaction was carried out using nitroxide spin-labeled lipids.


Proceedings of the National Academy of Sciences of the United States of America | 2010

A broad-spectrum antiviral targeting entry of enveloped viruses

Mike C. Wolf; Alexander N. Freiberg; Tinghu Zhang; Zeynep Akyol-Ataman; Andrew Grock; Patrick Hong; Jianrong Li; Natalya F. Watson; Angela Q. Fang; Hector C. Aguilar; Matteo Porotto; Anna N. Honko; Robert Damoiseaux; John P. Miller; Sara E. Woodson; Steven Chantasirivisal; Vanessa Fontanes; Oscar A. Negrete; Paul Krogstad; Asim Dasgupta; Anne Moscona; Lisa E. Hensley; Sean P. J. Whelan; Kym F. Faull; Michael E. Jung; Benhur Lee

We describe an antiviral small molecule, LJ001, effective against numerous enveloped viruses including Influenza A, filoviruses, poxviruses, arenaviruses, bunyaviruses, paramyxoviruses, flaviviruses, and HIV-1. In sharp contrast, the compound had no effect on the infection of nonenveloped viruses. In vitro and in vivo assays showed no overt toxicity. LJ001 specifically intercalated into viral membranes, irreversibly inactivated virions while leaving functionally intact envelope proteins, and inhibited viral entry at a step after virus binding but before virus–cell fusion. LJ001 pretreatment also prevented virus-induced mortality from Ebola and Rift Valley fever viruses. Structure–activity relationship analyses of LJ001, a rhodanine derivative, implicated both the polar and nonpolar ends of LJ001 in its antiviral activity. LJ001 specifically inhibited virus–cell but not cell–cell fusion, and further studies with lipid biosynthesis inhibitors indicated that LJ001 exploits the therapeutic window that exists between static viral membranes and biogenic cellular membranes with reparative capacity. In sum, our data reveal a class of broad-spectrum antivirals effective against enveloped viruses that target the viral lipid membrane and compromises its ability to mediate virus–cell fusion.


Journal of Biological Chemistry | 1999

Multiple Enzymatic Activities of the Murein Hydrolase from Staphylococcal Phage φ11 IDENTIFICATION OF A d-ALANYL-GLYCINE ENDOPEPTIDASE ACTIVITY

William Wiley Navarre; Hung Ton-That; Kym F. Faull; Olaf Schneewind

Bacteriophage muralytic enzymes degrade the cell wall envelope of staphylococci to release phage particles from the bacterial cytoplasm. Murein hydrolases of staphylococcal phages φ11, 80α, 187, Twort, and φPVL harbor a central domain that displays sequence homology to knownN-acetylmuramyl-l-alanyl amidases; however, their precise cleavage sites on the staphylococcal peptidoglycan have thus far not been determined. Here we examined the properties of the φ11 enzyme to hydrolyze either the staphylococcal cell wall or purified cell wall anchor structures attached to surface protein. Our results show that the φ11 enzyme has d-alanyl-glycyl endopeptidase as well asN-acetylmuramyl-l-alanyl amidase activity. Analysis of a deletion mutant lacking the amidase-homologous sequence, φ11(Δ181–381), revealed that the d-alanyl-glycyl endopeptidase activity is contained within the N-terminal 180 amino acid residues of the polypeptide chain. Sequences similar to this N-terminal domain are found in the murein hydrolases of staphylococcal phages but not in those of phages that infect other Gram-positive bacteria such as Listeria or Bacillus.


Nature | 2014

The metabolite α-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR

Randall M. Chin; Xudong Fu; Melody Y. Pai; Laurent Vergnes; Heejun Hwang; Gang Deng; Simon Diep; Brett Lomenick; Vijaykumar S. Meli; Gabriela C. Monsalve; Eileen Hu; Stephen A. Whelan; Jennifer X. Wang; Gwanghyun Jung; Gregory M. Solis; Farbod Fazlollahi; Chitrada Kaweeteerawat; Austin Quach; Mahta Nili; Abby S. Krall; Hilary A. Godwin; Helena R. Chang; Kym F. Faull; Feng Guo; Meisheng Jiang; Sunia A. Trauger; Alan Saghatelian; Daniel Braas; Heather R. Christofk; Catherine F. Clarke

Metabolism and ageing are intimately linked. Compared with ad libitum feeding, dietary restriction consistently extends lifespan and delays age-related diseases in evolutionarily diverse organisms. Similar conditions of nutrient limitation and genetic or pharmacological perturbations of nutrient or energy metabolism also have longevity benefits. Recently, several metabolites have been identified that modulate ageing; however, the molecular mechanisms underlying this are largely undefined. Here we show that α-ketoglutarate (α-KG), a tricarboxylic acid cycle intermediate, extends the lifespan of adult Caenorhabditis elegans. ATP synthase subunit β is identified as a novel binding protein of α-KG using a small-molecule target identification strategy termed drug affinity responsive target stability (DARTS). The ATP synthase, also known as complex V of the mitochondrial electron transport chain, is the main cellular energy-generating machinery and is highly conserved throughout evolution. Although complete loss of mitochondrial function is detrimental, partial suppression of the electron transport chain has been shown to extend C. elegans lifespan. We show that α-KG inhibits ATP synthase and, similar to ATP synthase knockdown, inhibition by α-KG leads to reduced ATP content, decreased oxygen consumption, and increased autophagy in both C. elegans and mammalian cells. We provide evidence that the lifespan increase by α-KG requires ATP synthase subunit β and is dependent on target of rapamycin (TOR) downstream. Endogenous α-KG levels are increased on starvation and α-KG does not extend the lifespan of dietary-restricted animals, indicating that α-KG is a key metabolite that mediates longevity by dietary restriction. Our analyses uncover new molecular links between a common metabolite, a universal cellular energy generator and dietary restriction in the regulation of organismal lifespan, thus suggesting new strategies for the prevention and treatment of ageing and age-related diseases.

Collaboration


Dive into the Kym F. Faull's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Puneet Souda

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nongnuj Tanphaichitr

Ottawa Hospital Research Institute

View shared research outputs
Top Co-Authors

Avatar

Alan J. Waring

Los Angeles Biomedical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge