Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kyoichi Otsuki is active.

Publication


Featured researches published by Kyoichi Otsuki.


Trees-structure and Function | 2008

Spatial variations in xylem sap flux density in evergreen oak trees with radial-porous wood: Comparisons with anatomical observations

Makiko Tateishi; Tomo’omi Kumagai; Yasuhiro Utsumi; Toshihiro Umebayashi; Yasuki Shiiba; Kazunobu Inoue; Kiyohiro Kaji; Keiichiro Cho; Kyoichi Otsuki

To estimate whole-tree water use when employing sap flow measurements, integration of the sap flux density (Fd) over the sapwood area is needed. Accordingly, it is necessary to obtain information on the characteristics of stem water transportation such as spatial variations in Fd and the active xylem area in the stem cross-section. Although evergreen oak trees with radial-porous wood represent a major component of secondary forests in western Japan, detailed information on their stem water transportation characteristics remains unclear. In the present study, we used the heat dissipation method (Granier method) to conduct measurements of azimuthal and radial variations in the Fd of Quercus glauca Thunb. ex Murray, a representative evergreen broad-leaved tree in western Japan. Further, by analyzing the anatomy of the xylem structure, we examined why Fd varies spatially in the stem cross-section. By using a dye solution injected into a radial hole bored into the tree trunk, we confirmed that the entire stem is hydroactive. We also compared the spatial variations in Fd and water conductivity per xylem area (Ks) which were estimated by using the observed vessel diameters and their density over the stem cross-section and Hagen–Poiseuille’s law. Azimuthal and radial variations in Fd reached about 60 and 50% of the maximum values, respectively, and could be explained by spatial variation in Ks. As a result, we obtained statistical parameters describing the spatial variation in Fd in Q. glauca and determined that whole-tree water use estimated from measurements in one direction had at most ±20% potential errors for studied trees.


Tree Physiology | 2010

Effects of sample size on sap flux-based stand-scale transpiration estimates

Tomonori Kume; Kenji Tsuruta; Hikaru Komatsu; Tomo’omi Kumagai; Naoko Higashi; Yoshinori Shinohara; Kyoichi Otsuki

In this study, we aimed to assess how sample sizes affect confidence of stand-scale transpiration (E) estimates calculated from sap flux (F(d)) and sapwood area (A(S_tree)) measurements of individual trees. In a Japanese cypress plantation, we measured F(d) and A(S_tree) in all trees (n = 58) within a 20 x 20 m study plot, which was divided into four 10 x 10 subplots. We calculated E from stand A(S_tree) (A(S_stand)) and mean stand F(d) (J(S)) values. Using Monte Carlo analyses, we examined the potential errors associated with sample sizes in E, A(S_stand) and J(S) using the original A(S_tree) and F(d) data sets. Consequently, we defined the optimal sample sizes of 10 and 15 for A(S_stand) and J(S) estimates, respectively, in the 20 x 20 m plot. Sample sizes larger than the optimal sample sizes did not decrease potential errors. The optimal sample sizes for J(S) changed according to plot size (e.g., 10 x 10 and 10 x 20 m), whereas the optimal sample sizes for A(S_stand) did not. As well, the optimal sample sizes for J(S) did not change in different vapor pressure deficit conditions. In terms of E estimates, these results suggest that the tree-to-tree variations in F(d) vary among different plots, and that plot size to capture tree-to-tree variations in F(d) is an important factor. The sample sizes determined in this study will be helpful for planning the balanced sampling designs to extrapolate stand-scale estimates to catchment-scale estimates.


Journal of Forest Research | 2007

Effects of discharge level on the load of dissolved and particulate components of stream nitrogen and phosphorus from a small afforested watershed of Japanese cypress (Chamaecyparis obtusa)

Jun’ichiro Ide; Osamu Nagafuchi; Masaaki Chiwa; Atsushi Kume; Kyoichi Otsuki; Shigeru Ogawa

The behavior of dissolved and particulate components of stream nitrogen (N) and phosphorus (P) were measured for 2 years in a small mountainous watershed covered primarily with a plantation forest of Japanese cypress (Chamaecyparis obtusa). The load of dissolved N and P bore a consistent relationship to discharge while the load of particulate N and P varied by up to two orders of magnitude at a given discharge level. Most N was exported in a dissolved form (DN) while most P was exported in a particulate form (PP), which bears similarity to loads from agricultural watersheds. Owing to the different behaviors of DN and PP, changes in the total nitrogen (TN) load were primarily attributed to variations in discharge unlike changes in the total phosphorus (TP) load. High flow conditions, resulting from heavy rainfall, displayed PP release significantly larger than expected. The TP load in high flow conditions was severely underestimated using a regression equation expressed as a function of discharge, which was based on the weekly sampling data biased toward low flow conditions. In addition, the TN load during peak discharges in heavy rain events was underestimated by the regression equation because of unpredictable increases in the particulate component. Our study shows that the particulate component ratio determines whether discharge can explain changes in load regardless of chemical species. The results suggest that plantation forests in rainy regions can be a diffuse source of particulate nutrients depending on soil surface conditions.


Tree Physiology | 2013

Azimuthal and radial variations in sap flux density and effects on stand-scale transpiration estimates in a Japanese cedar forest.

Yoshinori Shinohara; Kenji Tsuruta; Akira Ogura; Fumikazu Noto; Hikaru Komatsu; Kyoichi Otsuki; Toshisuke Maruyama

Understanding radial and azimuthal variation, and tree-to-tree variation, in sap flux density (Fd) as sources of uncertainty is important for estimating transpiration using sap flow techniques. In a Japanese cedar (Cryptomeria japonica D. Don.) forest, Fd was measured at several depths and aspects for 18 trees, using heat dissipation (Granier-type) sensors. We observed considerable azimuthal variation in Fd. The coefficient of variation (CV) calculated from Fd at a depth of 0-20 mm (Fd1) and Fd at a depth of 20-40 mm (Fd2) ranged from 6.7 to 37.6% (mean = 28.3%) and from 19.6 to 62.5% (mean = 34.6%) for the -azimuthal directions. Fd at the north aspect averaged for nine trees, for which azimuthal measurements were made, was -obviously smaller than Fd at the other three aspects (i.e., west, south and east) averaged for the nine trees. Fd1 averaged for the nine trees was significantly larger than Fd2 averaged for the nine trees. The error for stand-scale transpiration (E) estimates caused by ignoring the azimuthal variation was larger than that caused by ignoring the radial variation. The error caused by ignoring tree-to-tree variation was larger than that caused by ignoring both radial and azimuthal variations. Thus, tree-to-tree variation in Fd would be more important than both radial and azimuthal variations in Fd for E estimation. However, Fd for each tree should not be measured at a consistent aspect but should be measured at various aspects to make accurate E estimates and to avoid a risk of error caused by the relationship of Fd to aspect.


Journal of Forest Research | 2010

Azimuthal variations of sap flux density within Japanese cypress xylem trunks and their effects on tree transpiration estimates

Kenji Tsuruta; Tomonori Kume; Hikaru Komatsu; Naoko Higashi; Toshihiro Umebayashi; Tomo’omi Kumagai; Kyoichi Otsuki

Sap flow techniques are practical tools for estimating tree transpiration. Though many previous studies using sap flow techniques did not consider azimuthal variations of sap flux density (Fd) on xylem trunk to estimate tree transpiration, a few studies reported that ignoring the azimuthal variations in Fd could cause large errors in tree transpiration estimates for some tree species. Therefore, examining azimuthal variations in Fd for major plantation tree species is critical for estimating tree transpiration. Using the thermal dissipation method, we examined azimuthal variations in Fd in six trees of Japanese cypress Chamaecyparis obtusa (Sieb. et Zucc.) Endl., which is one of the most common plantation tree species in Japan. We recorded considerable variations among Fd at four different azimuthal directions. The Fd value for one aspect was more than 100% larger than those for the other aspects. We calculated differences between tree transpiration estimates based on Fd for one to three azimuthal directions and those based on Fd for four aspects. The differences relative to tree transpiration estimates based on Fd for four aspects were typically 30, 20, and 10% in accordance with the Fd for one, two, and three measurement aspects, respectively. This finding indicates that ignoring azimuthal variations could cause large errors in tree transpiration estimates for Japanese cypress.


Plant Physiology | 2011

The Developmental Process of Xylem Embolisms in Pine Wilt Disease Monitored by Multipoint Imaging Using Compact Magnetic Resonance Imaging

Toshihiro Umebayashi; Kenji Fukuda; Tomoyuki Haishi; Ryo Sotooka; Sule Zuhair; Kyoichi Otsuki

In pine wilt disease (PWD), embolized tracheids arise after virulent pine wood nematodes (PWN), Bursaphelenchus xylophilus, invade the resin canal of pine tree; infected pine trees finally die from significant loss of xylem water conduction. We used a compact magnetic resonance imaging system with a U-shaped radio frequency (rf) probe coil to reveal the developmental process of the xylem dysfunction in PWD. Multiple cross-sectional slices along the stem axis were acquired to periodically monitor the total water distribution in each 1-year-old main stem of two 3-year-old Japanese black pines (Pinus thunbergii) after inoculation of PWN. During the development of PWD, a mass of embolized tracheids around the inoculation site rapidly enlarged in all directions. This phenomenon occurred before the significant decrease of water potential. Some patch-like embolisms were observed at all monitoring positions during the experimental period. Patchy embolisms in a cross-section did not expand, but the number of patches increased as time passed. When the significant decrease of water potential occurred, the xylem dysfunctional rate near the inoculation point exceeded 70%. Finally, almost the whole area of xylem was abruptly embolized in all cross-sections along the stem. This phenomenon occurred just after water conduction was mostly blocked in one of the cross-sections. Thus, it appears that the simultaneous expansion of embolized conduit clusters may be required to induce a large-scale embolism across the functional xylem. Consequently, xylem dysfunction in infected trees may be closely related to both the distribution and the number of PWN in the pine stem.


Trees-structure and Function | 2010

Xylem water-conducting patterns of 34 broadleaved evergreen trees in southern Japan

Toshihiro Umebayashi; Yasuhiro Utsumi; Shinya Koga; Susumu Inoue; Junji Matsumura; Kazuyuki Oda; Seizo Fujikawa; Keita Arakawa; Kyoichi Otsuki

A dye injection method was used to elucidate the xylem water-conducting pathways of 34 broadleaved evergreen trees growing in southern Japan: two semi-ring-porous, 26 diffuse-porous, five radial-porous and one non-vessel species. The large earlywood vessels in semi-ring-porous species have a water transport function in only the outermost annual ring, as in deciduous ring-porous species. On the other hand, the small vessels in semi-ring-porous species maintain the water transport function in many outer annual rings. For the other xylem-type species, the many vessels in many outer annual rings have a water transport function. In diffuse-porous species, we categorized the water-conducting pattern within the annual rings into two types: d1 type, where water travels through vessels in the whole region; and d2 type, where water travels mainly through the earlywood vessels. The pattern in radial-porous species is similar to that in the d1 type; the pattern in non-vessels species is similar to that in the d2 type. The vessel diameter in radial-porous species is similar to that of the earlywood vessels of semi-ring-porous species. These results suggest that the conduit diameter size is only one of many factors determining the water-conducting pathways of broadleaved evergreen species.


Plant Species Biology | 2015

Comparisons of soil‐water content between a Moso bamboo (Phyllostachys pubescens) forest and an evergreen broadleaved forest in western Japan

Yoshinori Shinohara; Kyoichi Otsuki

In Japan, forests of Moso bamboo (Phyllostachys pubescens, an exotic invasive giant bamboo) have naturalized and expanded rapidly, replacing surrounding broadleaved and coniferous forests. To evaluate impacts caused by these forest-type replacements on the hydrological cycle, soil-water content and its spatial variability in a Moso bamboo forest were compared with those in an adjacent evergreen broadleaved forest, in a case study of a stand in western Japan (northern Kyushu). The volumetric soil-water content averaged over depths between 0 and 60 cm was consistently higher in the bamboo stand than that in the broadleaved stand. These results contrast with previous studies comparing the soil-water content in Moso bamboo forests with that in other forest types. The sum of canopy transpiration and soil evaporation (E) in the bamboo stand tended to be larger than that in the broadleaved stand. Small canopy interception loss was reported in the bamboo forest. Therefore, the large amount of E would counterbalance the small canopy interception loss in the bamboo forest. Differences in soil characteristics between the two stands may be the main factor causing differences in soil-water content. Spatial variation in soil-water content in the bamboo stand was larger than that in the broadleaved stand, confirming findings in a previous series of our study. This could happen because the well-developed root-system in the bamboo forest enhances preferential flow in the soil. To evaluate the effects of aggressive invasion of alien giant bamboo on the ecosystem functions, we recommend further studies measuring various hydrological components in various Moso bamboo forests.


Journal of Environmental Management | 2010

Water resource management in Japan: Forest management or dam reservoirs?

Hikaru Komatsu; Tomonori Kume; Kyoichi Otsuki

Researchers and journalists in Japan recently proposed forest management as an alternative to dam reservoir development for water resource management. To examine the validity of the proposal, we compared the potential low-flow increase due to forest clearcutting with the increase due to dam reservoir development. Here, we focused on forest clearcutting as an end member among various types of forest management. We first analyzed runoff data for five catchments and found a positive correlation between annual precipitation and the low-flow increase due to deforestation. We then examined the increase in low-flow rates due to dam reservoir development (dQ(d)) using inflow and outflow data for 45 dam reservoirs across Japan. Using the relationship between annual precipitation and the low-flow increase due to deforestation, we estimated the potential increase in the low-flow rate for each dam reservoir watershed if forests in the watershed were clearcut (dQ(f)). Only 6 of the 45 samples satisfied dQ(f)>dQ(d), indicating that the potential increase in the low-flow rate due to forest clearcutting was less than the increase due to dam reservoir development in most cases. Twenty-five of the 45 samples satisfied dQ(f)<0.2 dQ(d), indicating the potential increase in the low-flow rate due to forest clearcutting was less than 20% of the increase due to dam reservoir development in more than half the cases. Therefore, forest management is far less effective for water resource management than dam reservoir development is in Japan.


Functional Plant Biology | 2007

Decrease in the capacity for RuBP carboxylation and regeneration with the progression of cold-induced photoinhibition during winter in evergreen broadleaf tree species in a temperate forest

Yoshiyuki Miyazawa; Kihachiro Kikuzawa; Kyoichi Otsuki

We measured the photosynthetic capacity (RuBP carboxylation and electron transport capacity at 25°C) and the maximum photochemical efficiency (Fv/Fm) from autumn to spring in saplings of two evergreen broadleaf tree species and examined the negative effects of photoinhibition on the photosynthetic capacity. Saplings were grown in pots under three simulated natural light environments typical of temperate forests: an open site, deciduous understorey and evergreen understorey. During winter, the photosynthetic capacity and Fv/Fm synchronously decreased in leaves in the sun, but not those in the shade. We found large differences in Fv/Fm and photosynthetic capacity, along with a positive correlation between Fv/Fm and the photosynthetic capacity among leaves in different light environments. In photoinhibited leaves that were transferred to the shade in mid-winter, photosynthetic capacity increased synchronously with the increment of Fv/Fm. The decrease in photosynthetic capacity in photoinhibited leaves and the synchronous recovery of photosynthetic capacity with photoinhibition supported the hypothesis that photoinhibition depressed the photosynthetic capacity during winter. We showed that difference in the degree of photoinhibition was responsible for the different winter photosynthetic capacity among leaves exposed to different light environments.

Collaboration


Dive into the Kyoichi Otsuki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomonori Kume

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge