Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kyoko Hiwasa-Tanase is active.

Publication


Featured researches published by Kyoko Hiwasa-Tanase.


Plant and Cell Physiology | 2011

TOMATOMA: A Novel Tomato Mutant Database Distributing Micro-Tom Mutant Collections.

Takeshi Saito; Tohru Ariizumi; Yoshihiro Okabe; Erika Asamizu; Kyoko Hiwasa-Tanase; Naoya Fukuda; Tsuyoshi Mizoguchi; Yukiko Yamazaki; Koh Aoki; Hiroshi Ezura

The tomato is an excellent model for studies of plants bearing berry-type fruits and for experimental studies of the Solanaceae family of plants due to its conserved genetic organization. In this study, a comprehensive mutant tomato population was generated in the background of Micro-Tom, a dwarf, rapid-growth variety. In this and previous studies, a family including 8,598 and 6,422 M2 mutagenized lines was produced by ethylmethane sulfonate (EMS) mutagenesis and γ-ray irradiation, and this study developed and investigated these M2 plants for alteration of visible phenotypes. A total of 9,183 independent M2 families comprising 91,830 M2 plants were inspected for phenotypic alteration, and 1,048 individual mutants were isolated. Subsequently, the observed mutant phenotypes were classified into 15 major categories and 48 subcategories. Overall, 1,819 phenotypic categories were found in 1,048 mutants. Of these mutants, 549 were pleiotropic, whereas 499 were non-pleiotropic. Multiple different mutant alleles per locus were found in the mutant libraries, suggesting that the mutagenized populations were nearly saturated. Additionally, genetic analysis of backcrosses indicated the successful inheritance of the mutations in BC1F2 populations, confirming the reproducibility in the morphological phenotyping of the M2 plants. To integrate and manage the visible phenotypes of mutants and other associated data, we developed the in silico database TOMATOMA, a relational system interfacing modules between mutant line names and phenotypic categories. TOMATOMA is a freely accessible database, and these mutant recourses are available through the TOMATOMA (http://tomatoma.nbrp.jp/index.jsp).


PLOS ONE | 2011

Covering chemical diversity of genetically-modified tomatoes using metabolomics for objective substantial equivalence assessment.

Miyako Kusano; Henning Redestig; Tadayoshi Hirai; Akira Oikawa; Fumio Matsuda; Atsushi Fukushima; Masanori Arita; Shin Watanabe; Megumu Yano; Kyoko Hiwasa-Tanase; Hiroshi Ezura; Kazuki Saito

As metabolomics can provide a biochemical snapshot of an organisms phenotype it is a promising approach for charting the unintended effects of genetic modification. A critical obstacle for this application is the inherently limited metabolomic coverage of any single analytical platform. We propose using multiple analytical platforms for the direct acquisition of an interpretable data set of estimable chemical diversity. As an example, we report an application of our multi-platform approach that assesses the substantial equivalence of tomatoes over-expressing the taste-modifying protein miraculin. In combination, the chosen platforms detected compounds that represent 86% of the estimated chemical diversity of the metabolites listed in the LycoCyc database. Following a proof-of-safety approach, we show that % had an acceptable range of variation while simultaneously indicating a reproducible transformation-related metabolic signature. We conclude that multi-platform metabolomics is an approach that is both sensitive and robust and that it constitutes a good starting point for characterizing genetically modified organisms.


Journal of Agricultural and Food Chemistry | 2010

Spatial and developmental profiling of miraculin accumulation in transgenic tomato fruits expressing the miraculin gene constitutively.

You-Wang Kim; Kazuhisa Kato; Tadayoshi Hirai; Kyoko Hiwasa-Tanase; Hiroshi Ezura

We previously developed a transgenic tomato that expresses the miraculin gene using a constitutive promoter. In this study, we profiled the developmental and spatial accumulation of the miraculin protein and mRNA in transgenic tomato fruits. Miraculin mRNA expression was almost constant up to orange stage, and then the expression increased at red stage. The miraculin protein accumulated gradually during fruit development and reached its highest level at the overripe stage. At the red stage of fruit, miraculin protein was accumulated at the highest level in the exocarp, and similar in other fruit tissues: mesocarp, dissepiment, upper placenta, lower placenta and jelly. Moreover, the pattern of miraculin accumulation in fruit tissues was the same regardless of genetic background and position at which the miraculin gene was inserted in the genome. We also discuss suitable tomato types expressing miraculin for their commercial use.


Plant Cell Reports | 2012

From miracle fruit to transgenic tomato: mass production of the taste-modifying protein miraculin in transgenic plants

Kyoko Hiwasa-Tanase; Tadayoshi Hirai; Kazuhisa Kato; Narendra Duhita; Hiroshi Ezura

The utility of plants as biofactories has progressed in recent years. Some recombinant plant-derived pharmaceutical products have already reached the marketplace. However, with the exception of drugs and vaccines, a strong effort has not yet been made to bring recombinant products to market, as cost-effectiveness is critically important for commercialization. Sweet-tasting proteins and taste-modifying proteins have a great deal of potential in industry as substitutes for sugars and as artificial sweeteners. The taste-modifying protein, miraculin, functions to change the perception of a sour taste to a sweet one. This taste-modifying function can potentially be used not only as a low-calorie sweetener but also as a new seasoning that could be the basis of a new dietary lifestyle. However, miraculin is far from inexpensive, and its potential as a marketable product has not yet been fully developed. For the last several years, biotechnological production of this taste-modifying protein has progressed extensively. In this review, the characteristics of miraculin and recent advances in its production using transgenic plants are summarized, focusing on such topics as the suitability of plant species as expression hosts, the cultivation method for transgenic plants, the method of purifying miraculin and future advances required to achieve industrial use.


Journal of Agricultural and Food Chemistry | 2011

The HSP terminator of Arabidopsis thaliana induces a high level of miraculin accumulation in transgenic tomatoes.

Tadayoshi Hirai; Natsuko Kurokawa; Narendra Duhita; Kyoko Hiwasa-Tanase; Kazuhisa Kato; Ko Kato; Hiroshi Ezura

High-level accumulation of the target recombinant protein is a significant issue in heterologous protein expression using transgenic plants. Miraculin, a taste-modifying protein, was accumulated in transgenic tomatoes using an expression cassette in which the miraculin gene was expressed by the cauliflower mosaic virus (CaMV) 35S promoter and the heat shock protein (HSP) terminator (MIR-HSP). The HSP terminator was derived from heat shock protein 18.2 in Arabidopsis thaliana . Using this HSP-containing cassette, the miraculin concentration in T0 transgenic tomato lines was 1.4-13.9% of the total soluble protein (TSP), and that in the T1 transgenic tomato line homozygous for the miraculin gene reached 17.1% of the TSP. The accumulation level of the target protein was comparable to levels observed with chloroplast transformation. The high-level accumulation of miraculin in T0 transgenic tomato lines achieved by the HSP terminator was maintained in the successive T1 generation, demonstrating the genetic stability of this accumulation system.


Plant Signaling & Behavior | 2011

A trial of production of the plant-derived high-value protein in a plant factory: photosynthetic photon fluxes affect the accumulation of recombinant miraculin in transgenic tomato fruits.

Kazuhisa Kato; Shinichiro Maruyama; Tadayoshi Hirai; Kyoko Hiwasa-Tanase; Tsuyoshi Mizoguchi; Eiji Goto; Hiroshi Ezura

One of the ultimate goals of plant science is to test a hypothesis obtained by basic science and to apply it to agriculture and industry. A plant factory is one of the ideal systems for this trial. Environmental factors affect both plant yield and the accumulation of recombinant proteins for industrial applications within transgenic plants. However, there have been few reports studying plant productivity for recombinant protein in closed cultivation systems called plant factories. To investigate the effects of photosynthetic photon flux (PPF) on tomato fruit yield and the accumulation of recombinant miraculin, a taste-modifying glycoprotein, in transgenic tomato fruits, plants were cultivated at various PPFs from 100 to 400 (µmol m-2 s-1) in a plant factory. Miraculin production per unit of energy used was highest at PPF100, although miraculin production per unit area was highest at PPF300. The commercial productivity of recombinant miraculin in transgenic tomato fruits largely depended on light conditions in the plant factory. Our trial will be useful to consider the trade-offs between the profits from production of high-value materials in plants and the costs of electricity.


Journal of Agricultural and Food Chemistry | 2009

Single-Step Purification of Native Miraculin Using Immobilized Metal-Affinity Chromatography

Narendra Duhita; Kyoko Hiwasa-Tanase; Shigeki Yoshida; Hiroshi Ezura

Miraculin is a taste-modifying protein that can be isolated from miracle fruit ( Richadella dulcifica ), a shrub native to West Africa. It is able to turn a sour taste into a sweet taste. The commercial exploitation of this sweetness-modifying protein is underway, and a fast and efficient purification method to extract the protein is needed. We succeeded in purifying miraculin from miracle fruit in a single-step purification using immobilized metal-affinity chromatography (IMAC). The purified miraculin exhibited high purity (>95%) in reverse-phase high-performance liquid chromatography. We also demonstrated the necessity of its structure for binding to the nickel-IMAC column.


Transgenic Research | 2011

Uniform accumulation of recombinant miraculin protein in transgenic tomato fruit using a fruit-ripening-specific E8 promoter.

Tadayoshi Hirai; You-Wang Kim; Kazuhisa Kato; Kyoko Hiwasa-Tanase; Hiroshi Ezura

The E8 promoter, a tomato fruit-ripening-specific promoter, and the CaMV 35S promoter, a constitutive promoter, were used to express the miraculin gene encoding the taste-modifying protein in tomato. The accumulation of miraculin protein and mRNA was compared among transgenic tomatoes expressing the miraculin gene driven by these promoters. Recombinant miraculin protein predominantly accumulated in transgenic tomato lines using the E8 promoter (E8-MIR) only at the red fruit stage. The accumulations were almost uniform among all fruit tissues. When the 35S promoter (35S-MIR) was used, miraculin accumulation in the exocarp was much higher than in other tissues, indicating that the miraculin accumulation pattern can be regulated by using different types of promoters. We also discuss the potential of the E8-MIR lines for practical use.


Plant Cell Reports | 2012

Novel promoters that induce specific transgene expression during the green to ripening stages of tomato fruit development

Kyoko Hiwasa-Tanase; Hirofumi Kuroda; Tadayoshi Hirai; Koh Aoki; Kenichi Takane; Hiroshi Ezura

AbstractFruit-specific promoters have been used as genetic engineering tools for studies on molecular mechanism of fruit development and advance in fruit quality and additional value by increasing functional component. Especially fruit-ripening specific promoters have been well utilized and studied in tomato; however, few studies have reported the development of promoters that act at fruit developing stages such as immature green and mature green periods. In this study, we report novel promoters for gene expression during the green to ripening stages of tomato fruit development. Genes specifically expressed at tomato fruit were selected using microarray data. Subsequent to confirmation of the expression of the selected 12 genes, upstream DNA fragments of the genes LA22CD07, Les.3122.2.A1_a_at and LesAffx.6852.1.S1_at which specifically expressed at fruit were isolated from tomato genomic DNA as promoter regions. Isolated promoter regions were fused with the GUS gene and the resultant constructs were introduced into tomato by agrobacterium-mediated transformation for evaluation of promoter activity in tomato fruit. The two promoters of LA22CD07, and LesAffx.6852.1.S1_at showed strong activity in the fruit, weak activity in the flower and undetectable activity in other tissues. Unlike well-known fruit-ripening specific promoters, such as the E8 promoter, these promoters exhibited strong activity in green fruit in addition to red-ripening fruit, indicating that the promoters are suitable for transgene expression during green to ripening stages of tomato fruit development. Key message Novel fruit-specific promoters have been identified and are suitable for transgene expression during green to ripening stages of tomato fruit development.


Frontiers in Plant Science | 2016

Molecular Breeding to Create Optimized Crops: From Genetic Manipulation to Potential Applications in Plant Factories

Kyoko Hiwasa-Tanase; Hiroshi Ezura

Crop cultivation in controlled environment plant factories offers great potential to stabilize the yield and quality of agricultural products. However, many crops are currently unsuited to these environments, particularly closed cultivation systems, due to space limitations, low light intensity, high implementation costs, and high energy requirements. A major barrier to closed system cultivation is the high running cost, which necessitates the use of high-margin crops for economic viability. High-value crops include those with enhanced nutritional value or containing additional functional components for pharmaceutical production or with the aim of providing health benefits. In addition, it is important to develop cultivars equipped with growth parameters that are suitable for closed cultivation. Small plant size is of particular importance due to the limited cultivation space. Other advantageous traits are short production cycle, the ability to grow under low light, and high nutriculture availability. Cost-effectiveness is improved from the use of cultivars that are specifically optimized for closed system cultivation. This review describes the features of closed cultivation systems and the potential application of molecular breeding to create crops that are optimized for cost-effectiveness and productivity in closed cultivation systems.

Collaboration


Dive into the Kyoko Hiwasa-Tanase's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Koh Aoki

Osaka Prefecture University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge