Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kyong-Su Park is active.

Publication


Featured researches published by Kyong-Su Park.


Journal of extracellular vesicles | 2013

EVpedia: an integrated database of high-throughput data for systemic analyses of extracellular vesicles

Dae-Kyum Kim; Byeongsoo Kang; Oh Youn Kim; Dong-Sic Choi; Jaewook Lee; Sae Rom Kim; Gyeongyun Go; Yae Jin Yoon; Ji Hyun Kim; Su Chul Jang; Kyong-Su Park; Eun-Jeong Choi; Kwang Pyo Kim; Dominic M. Desiderio; Yoon-Keun Kim; Jan Lötvall; Daehee Hwang; Yong Song Gho

Secretion of extracellular vesicles is a general cellular activity that spans the range from simple unicellular organisms (e.g. archaea; Gram-positive and Gram-negative bacteria) to complex multicellular ones, suggesting that this extracellular vesicle-mediated communication is evolutionarily conserved. Extracellular vesicles are spherical bilayered proteolipids with a mean diameter of 20–1,000 nm, which are known to contain various bioactive molecules including proteins, lipids, and nucleic acids. Here, we present EVpedia, which is an integrated database of high-throughput datasets from prokaryotic and eukaryotic extracellular vesicles. EVpedia provides high-throughput datasets of vesicular components (proteins, mRNAs, miRNAs, and lipids) present on prokaryotic, non-mammalian eukaryotic, and mammalian extracellular vesicles. In addition, EVpedia also provides an array of tools, such as the search and browse of vesicular components, Gene Ontology enrichment analysis, network analysis of vesicular proteins and mRNAs, and a comparison of vesicular datasets by ortholog identification. Moreover, publications on extracellular vesicle studies are listed in the database. This free web-based database of EVpedia (http://evpedia.info) might serve as a fundamental repository to stimulate the advancement of extracellular vesicle studies and to elucidate the novel functions of these complex extracellular organelles.


Bioinformatics | 2015

EVpedia: a community web portal for extracellular vesicles research

Dae-Kyum Kim; Jaewook Lee; Sae Rom Kim; Dong Sic Choi; Yae Jin Yoon; Ji Hyun Kim; Gyeongyun Go; Dinh Nhung; Kahye Hong; Su Chul Jang; Si-Hyun Kim; Kyong-Su Park; Oh Youn Kim; Hyun Taek Park; Jihye Seo; Elena Aikawa; Monika Baj-Krzyworzeka; Bas W. M. van Balkom; Mattias Belting; Lionel Blanc; Vincent C. Bond; Antonella Bongiovanni; Francesc E. Borràs; Luc Buée; Edit I. Buzás; Lesley Cheng; Aled Clayton; Emanuele Cocucci; Charles S. Dela Cruz; Dominic M. Desiderio

MOTIVATIONnExtracellular vesicles (EVs) are spherical bilayered proteolipids, harboring various bioactive molecules. Due to the complexity of the vesicular nomenclatures and components, online searches for EV-related publications and vesicular components are currently challenging.nnnRESULTSnWe present an improved version of EVpedia, a public database for EVs research. This community web portal contains a database of publications and vesicular components, identification of orthologous vesicular components, bioinformatic tools and a personalized function. EVpedia includes 6879 publications, 172 080 vesicular components from 263 high-throughput datasets, and has been accessed more than 65 000 times from more than 750 cities. In addition, about 350 members from 73 international research groups have participated in developing EVpedia. This free web-based database might serve as a useful resource to stimulate the emerging field of EV research.nnnAVAILABILITY AND IMPLEMENTATIONnThe web site was implemented in PHP, Java, MySQL and Apache, and is freely available at http://evpedia.info.


PLOS ONE | 2010

Outer Membrane Vesicles Derived from Escherichia coli Induce Systemic Inflammatory Response Syndrome

Kyong-Su Park; Kyoung Ho Choi; You-Sun Kim; Bok Sil Hong; Oh Youn Kim; Ji Hyun Kim; Chang Min Yoon; Gou Young Koh; Yoon-Keun Kim; Yong Song Gho

Sepsis, characterized by a systemic inflammatory state that is usually related to Gram-negative bacterial infection, is a leading cause of death worldwide. Although the annual incidence of sepsis is still rising, the exact cause of Gram-negative bacteria-associated sepsis is not clear. Outer membrane vesicles (OMVs), constitutively secreted from Gram-negative bacteria, are nano-sized spherical bilayered proteolipids. Using a mouse model, we showed that intraperitoneal injection of OMVs derived from intestinal Escherichia coli induced lethality. Furthermore, OMVs induced host responses which resemble a clinically relevant condition like sepsis that was characterized by piloerection, eye exudates, hypothermia, tachypnea, leukopenia, disseminated intravascular coagulation, dysfunction of the lungs, hypotension, and systemic induction of tumor necrosis factor-α and interleukin-6. Our study revealed a previously unidentified causative microbial signal in the pathogenesis of sepsis, suggesting OMVs as a new therapeutic target to prevent and/or treat severe sepsis caused by Gram-negative bacterial infection.


Journal of Immunology | 2013

Immunization with Escherichia coli Outer Membrane Vesicles Protects Bacteria-Induced Lethality via Th1 and Th17 Cell Responses

Oh Youn Kim; Bok Sil Hong; Kyong-Su Park; Yae Jin Yoon; Seng Jin Choi; Won Hee Lee; Tae-Young Roh; Jan Lötvall; Yoon-Keun Kim; Yong Song Gho

Outer membrane vesicles (OMVs), secreted from Gram-negative bacteria, are spherical nanometer-sized proteolipids enriched with outer membrane proteins. OMVs, also known as extracellular vesicles, have gained interests for use as nonliving complex vaccines and have been examined for immune-stimulating effects. However, the detailed mechanism on how OMVs elicit the vaccination effect has not been studied extensively. In this study, we investigated the immunological mechanism governing the protective immune response of OMV vaccines. Immunization with Escherichia coli–derived OMVs prevented bacteria-induced lethality and OMV-induced systemic inflammatory response syndrome. As verified by adoptive transfer and gene-knockout studies, the protective effect of OMV immunization was found to be primarily by the stimulation of T cell immunity rather than B cell immunity, especially by the OMV-Ag–specific production of IFN-γ and IL-17 from T cells. By testing the bacteria-killing ability of macrophages, we also demonstrated that IFN-γ and IL-17 production is the main factor promoting bacterial clearances. Our findings reveal that E. coli–derived OMV immunization effectively protects bacteria-induced lethality and OMV-induced systemic inflammatory response syndrome primarily via Th1 and Th17 cell responses. This study therefore provides a new perspective on the immunological detail regarding OMV vaccination.


Small | 2015

In vivo kinetic biodistribution of nano-sized outer membrane vesicles derived from bacteria.

Su Chul Jang; Sae Rom Kim; Yae Jin Yoon; Kyong-Su Park; Ji Hyun Kim; Jaewook Lee; Oh Youn Kim; Eun-Jeong Choi; Dae-Kyum Kim; Dong-Sic Choi; Yoon-Keun Kim; Jaesung Park; Dolores Di Vizio; Yong Song Gho

Evaluation of kinetic distribution and behaviors of nanoparticles in vivo provides crucial clues into their roles in living organisms. Extracellular vesicles are evolutionary conserved nanoparticles, known to play important biological functions in intercellular, inter-species, and inter-kingdom communication. In this study, the first kinetic analysis of the biodistribution of outer membrane vesicles (OMVs)-bacterial extracellular vesicles-with immune-modulatory functions is performed. OMVs, injected intraperitoneally, spread to the whole mouse body and accumulate in the liver, lung, spleen, and kidney within 3 h of administration. As an early systemic inflammation response, increased levels of TNF-α and IL-6 are observed in serum and bronchoalveolar lavage fluid. In addition, the number of leukocytes and platelets in the blood is decreased. OMVs and cytokine concentrations, as well as body temperature are gradually decreased 6 h after OMV injection, in concomitance with the formation of eye exudates, and of an increase in ICAM-1 levels in the lung. Following OMV elimination, most of the inflammatory signs are reverted, 12 h post-injection. However, leukocytes in bronchoalveolar lavage fluid are increased as a late reaction. Taken together, these results suggest that OMVs are effective mediators of long distance communication in vivo.


PLOS ONE | 2012

Therapeutic Effects of Autologous Tumor-Derived Nanovesicles on Melanoma Growth and Metastasis

Eun-Young Lee; Kyong-Su Park; Yae Jin Yoon; Jaewook Lee; Hyung-Geun Moon; Su Chul Jang; Kyoung Ho Choi; Yoon-Keun Kim; Yong Song Gho

Cancer vaccines with optimal tumor-associated antigens show promise for anti-tumor immunotherapy. Recently, nano-sized vesicles, such as exosomes derived from tumors, were suggested as potential antigen candidates, although the total yield of exosomes is not sufficient for clinical applications. In the present study, we developed a new vaccine strategy based on nano-sized vesicles derived from primary autologous tumors. Through homogenization and sonication of tumor tissues, we achieved high yields of vesicle-bound antigens. These nanovesicles were enriched with antigenic membrane targets but lacked nuclear autoantigens. Furthermore, these nanovesicles together with adjuvant activated dendritic cells in vitro, and induced effective anti-tumor immune responses in both primary and metastatic melanoma mouse models. Therefore, autologous tumor-derived nanovesicles may represent a novel source of antigens with high-level immunogenicity for use in acellular vaccines without compromising safety. Our strategy is cost-effective and can be applied to patient-specific cancer therapeutic vaccination.


PLOS ONE | 2013

Outer membrane vesicles derived from Escherichia coli up-regulate expression of endothelial cell adhesion molecules in vitro and in vivo.

Ji Hyun Kim; Yae Jin Yoon; Jaewook Lee; Eun-Jeong Choi; Namwoo Yi; Kyong-Su Park; Jaesung Park; Jan Lötvall; Yoon-Keun Kim; Yong Song Gho

Escherichia coli, as one of the gut microbiota, can evoke severe inflammatory diseases including peritonitis and sepsis. Gram-negative bacteria including E. coli constitutively release nano-sized outer membrane vesicles (OMVs). Although E. coli OMVs can induce the inflammatory responses without live bacteria, the effect of E. coli OMVs in vivo on endothelial cell function has not been previously elucidated. In this study, we show that bacteria-free OMVs increased the expression of endothelial intercellular adhesion molecule-1 (ICAM-1), E-selectin and vascular cell adhesion molecule-1, and enhanced the leukocyte binding on human microvascular endothelial cells in vitro. Inhibition of NF-κB and TLR4 reduced the expression of cell adhesion molecules in vitro. OMVs given intraperitoneally to the mice induced ICAM-1 expression and neutrophil sequestration in the lung endothelium, and the effects were reduced in ICAM-1-/- and TLR4-/- mice. When compared to free lipopolysaccharide, OMVs were more potent in inducing both ICAM-1 expression as well as leukocyte adhesion in vitro, and ICAM-1 expression and neutrophil sequestration in the lungs in vivo. This study shows that OMVs potently up-regulate functional cell adhesion molecules via NF-κB- and TLR4-dependent pathways, and that OMVs are more potent than free lipopolysaccharide.


American Journal of Respiratory Cell and Molecular Biology | 2013

Pulmonary Inflammation Induced by Bacteria-Free Outer Membrane Vesicles from Pseudomonas aeruginosa

Kyong-Su Park; Jaewook Lee; Su Chul Jang; Sae Rom Kim; Myoung Ho Jang; Jan Lötvall; Yoon-Keun Kim; Yong Song Gho

Pseudomonas aeruginosa is often involved in lung diseases such as cystic fibrosis. These bacteria can release outer membrane vesicles (OMVs), which are bilayered proteolipids with diameters of approximately 20 to 250 nm. In vitro, these OMVs activate macrophages and airway epithelial cells. The aim of this study was to determine whether OMVs from P. aeruginosa can induce pulmonary inflammation in vivo and to elucidate the mechanisms involved. Bacteria-free OMVs were isolated from P. aeruginosa cultures. Wild-type, Toll-like receptor (TLR)2 and TLR4 knockout mice were exposed to OMVs by the airway, and inflammation in the lung was assessed using differential counts, histology, and quantification of chemokines and cytokines. The involvement of the TLR2 and TLR4 pathways was studied in human cells using transfection. OMVs given to the mouse lung caused dose- and time-dependent pulmonary cellular inflammation. Furthermore, OMVs increased concentrations of several chemokines and cytokines in the mouse lungs and mouse alveolar macrophages. The inflammatory responses to OMVs were comparable to those of live bacteria and were only partly regulated by the TLR2 and TLR4 pathways, according to studies in knockout mice. This study shows that OMVs from P. aeruginosa cause pulmonary inflammation without live bacteria in vivo. This effect is only partly controlled by TLR2 and TLR4. The role of OMVs in clinical disease warrants further studies because targeting of OMVs in addition to live bacteria may add clinical benefit compared with treating with antibiotics alone.


Nano Letters | 2015

Bacterial Protoplast-Derived Nanovesicles as Vaccine Delivery System against Bacterial Infection

Oh Youn Kim; Seng Jin Choi; Su Chul Jang; Kyong-Su Park; Sae Rom Kim; Jun Pyo Choi; Ji Hwan Lim; Seung-Woo Lee; Jaesung Park; Dolores Di Vizio; Jan Lötvall; Yoon-Keun Kim; Yong Song Gho

The notion that widespread infectious diseases could be best managed by developing potent, adjuvant-free vaccines has resulted in the use of various biological immune-stimulating components as new vaccine candidates. Recently, extracellular vesicles, also known as exosomes and microvesicles in mammalian cells and outer membrane vesicles in Gram-negative bacteria, have gained attention for the next generation vaccine. However, the more invasive and effective the vaccine is in delivery, the more risk it holds for severe immune toxicity. Here, in optimizing the current vaccine delivery system, we designed bacterial protoplast-derived nanovesicles (PDNVs), depleted of toxic outer membrane components to generate a universal adjuvant-free vaccine delivery system. These PDNVs exhibited significantly higher productivity and safety than the currently used vaccine delivery vehicles and induced strong antigen-specific humoral and cellular immune responses. Moreover, immunization with PDNVs loaded with bacterial antigens conferred effective protection against bacterial sepsis in mice. These nonliving nanovesicles derived from bacterial protoplast open up a new avenue for the creation of next generation, adjuvant-free, less toxic vaccines to be used to prevent infectious diseases.


Sensors and Actuators A-physical | 2000

Rotating coil method for the measurement of deflecting magnetic fields in cathode ray tube

Kyong-Su Park; Bongkoo Kang; Moohyun Yoon; J.H. Lim

A fast and reliable method for measuring and analyzing the magnetic fields of the deflecting yoke (DY) in a cathode ray tube (CRT) is presented. The measurement is based on the rotating coil method and uses a set of coils to measure the axial distribution of DY magnetic fields. The output voltage of each coil is integrated and then Fourier transformed to obtain the multipole error components. The magnetic vector and scalar potentials are calculated from the measured data using a theory of complex magnetic potential. The results of the rotating coil measurement are compared with those of the conventional Hall probe mapping method. Both results agree reasonably well, indicating that the rotating coil method can be applied for efficient measurement of a complicated DY magnetic field; the required time for measurement is very short and on-line analysis of multipole error fields is possible.

Collaboration


Dive into the Kyong-Su Park's collaboration.

Top Co-Authors

Avatar

Yong Song Gho

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Oh Youn Kim

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jaewook Lee

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Su Chul Jang

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jan Lötvall

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Ji Hyun Kim

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Sae Rom Kim

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Yae Jin Yoon

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jaesung Park

Pohang University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge