Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kyoung Seob Song is active.

Publication


Featured researches published by Kyoung Seob Song.


Molecules and Cells | 2011

Peptidoglycan from Staphylococcus aureus increases MUC5AC gene expression via RSK1-CREB pathway in human airway epithelial cells.

Young Ok Kim; Min Jung Jung; Jang Kyu Choi; Do Whan Ahn; Kyoung Seob Song

Respiratory tract exposure to viruses, air pollutants, or bacterial pathogens can lead to pulmonary diseases. The molecular mechanism of mucous overproduction increased by these pathogens provides the knowledge for developing new therapeutic strategies. There is established in vitro data demonstrating that the overexpression of MUC5AC is induced by peptidoglycan (PGN) derived from Staphylococcus aureus. However, the mechanisms by which PGN activates MUC5AC gene expression in the airway remain unclear. The aim of this study was to identify the mechanism of PGN-induced MUC5AC gene expression. We found that PGN could induce MUC5AC gene expressions in a time- and dose-dependent manner. Moreover, activations of ERK1/2 and JNK increased after treatment of cells with PGN, whereas phosporylation of p38 was undetected. Of these MAPKs, pharmacologic inhibition of ERK1/2 decreased PGN-induced MUC5AC gene expression. In addition, we checked the activation of p90 ribosomal S6 kinase 1 (RSK1) as a downstream signaling target of ERK1/2 in PGN signaling. The activation of RSK1 was prevented by pretreatment with PD98059. We also found that RSK1 mediated the PGN-induced phosphorylation of cAMP response element-binding protein (CREB) and the transcription of MUC5AC. Furthermore, the cAMPresponse element (CRE) in the MUC5AC promoter appears to be important for PGN-induced MUC5AC gene expression in NCI-H292 cells.


Acta Physiologica | 2013

Src homology 2-containing protein tyrosine phosphatase-2 acts as a negative regulator for MUC5AC transcription via the inhibition of the ERK1/2 MAPK signalling pathway in the airway.

Kyoung Seob Song; Jang-Kyu Choi; Do Whan Ahn

Mucus hypersecretion has been frequently observed in inflammation respiratory diseases. However, the negative regulators for mucus overproduction have not been readily identified. Our work focused on identifying novel negative regulator that modulates mucus overproduction in the human respiratory system. Herein, we examined whether H2O2 could induce MUC5AC transcription in a dose‐dependent manner and activate tyrosine phosphatase (SHP)‐2 in human airway epithelial cells.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2015

Silencing of MUC8 by siRNA increases P2Y2-induced airway inflammation

Hee-Jae Cha; Min-Su Jung; Do Whan Ahn; Jang-Kyu Choi; Mee Sun Ock; Kyung Soo Kim; Joo-Heon Yoon; Eun Ju Song; Kyoung Seob Song

Mucin hypersecretion and overproduction are frequent manifestations of respiratory disease. Determining the physiological function of airway mucin is presently considered more important than identifying the relevant signaling pathways. The lack of a full-length human mucin 8 (MUC8) cDNA sequence has hindered the generation of a Muc8 knockout mouse line. Thus, the precise physiological functions of MUC8 are unclear. Herein, we investigated the function of MUC8 using a small-interfering RNA (siRNA)-mediated genetic silencing approach in human airway epithelial cells. Herein, intracellular IL-1α production was stimulated by an ATP/P2Y2 complex. While ATP/P2Y₂ increased IL-1α secretion in a time-dependent manner, treatment with P2Y₂-specific siRNA significantly decreased IL-1α secretion. Moreover, ATP increased P2Y₂-mediated upregulation of MUC8 expression; however, IL-1α significantly decreased the extent to which ATP/P2Y₂ upregulated MUC8 expression. Interestingly, treatment with MUC8-specific siRNA decreased the production of anti-inflammatory cytokines (TGF-β and IL-1 receptor antagonist) and increased the production of inflammatory cytokines (IL-1α and IL-6) in our system. In addition, siRNA-mediated knockdown of MUC8 expression dramatically increased the secretion of inflammatory chemokines and resulted in an approximately threefold decrease in cell chemotaxis. We propose that MUC8 may function as an anti-inflammatory mucin that participates in inflammatory response by attracting immune cells/cytokines to the site of inflammation. Our results provide new insight into the physiological function of MUC8 and enhance our understanding of mucin overproduction during airway inflammation.


International Journal of Oncology | 2012

Antimycin A sensitizes cells to TRAIL-induced apoptosis through upregulation of DR5 and downregulation of c-FLIP and Bcl-2

Sung-Jun Lee; Eun-Ae Kim; Kyoung Seob Song; Min-Jae Kim; Dae Hyung Lee; Taeg Kyu Kwon; Tae-Jin Lee

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been the focus as a potential anticancer drug, because it induces apoptosis in a wide variety of cancer cells but not in most normal human cell types. In this study, we showed that combination treatment with sub-toxic doses of antimycin A (AMA), an inhibitor of electron transport, plus TRAIL induced apoptosis in human renal cancer cells, but not in normal tubular kidney cells. Treatment of Caki cells with AMA upregulated the death receptor 5 (DR5) protein and downregulated c-FLIP and Bcl-2 proteins in a dose-dependent manner. AMA-induced decrease of c-FLIPL and c-FLIPs protein levels which were caused by increased protein instability, which was confirmed by the result showing that treatment with a protein biosynthesis inhibitor, CHX, accelerated degradation of c-FLIPL and c-FLIPs proteins caused by AMA treatment. We also found that AMA induced upregulation of DR5 and downregulation of Bcl-2 at the transcriptional level. Pretreatment with N-acetyl-l-cysteine (NAC) partly recovered the expression levels of c-FLIPL and c-FLIPs proteins were downregulated by the AMA treatment, suggesting that AMA appears to be partially dependent on the generation of ROS for downregulation of c-FLIPL and c-FLIPs. Collectively, this study demonstrates that AMA enhances TRAIL-induced apoptosis in human renal cancer cells by upregulation of DR5 as well as downregulation of c-FLIP and Bcl-2. Furthermore, this study shows that AMA markedly increases sensitivity to cisplatin in Caki human renal cancer cells.


Veterinary Parasitology | 2013

Trichinella spiralis infection reduces tumor growth and metastasis of B16-F10 melanoma cells

Yun-Jeong Kang; Jin-Ok Jo; Min-Kyoung Cho; Hak-Sun Yu; Sun-Hee Leem; Kyoung Seob Song; Mee Sun Ock; Hee-Jae Cha

Recently, attempts have been made to use parasites as novel candidates for live vaccine vectors against solid tumors. In this study, we examined the effects of Trichinella spiralis (T. spiralis) infection on solid tumor growth and metastasis. After oral infection with T. spiralis larvae, B16-F10 cells were injected subcutaneously and intravenously into C57BL/6 mice to evaluate tumor growth and metastatic potential, respectively. Tumor growth and lung metastases in T. spiralis infected mice were significantly reduced compared with control mice. To elucidate the mechanism of tumor reduction by parasitic infection, we conducted cytokine arrays using mouse serum. CXCL9 and CXCL10 were increased in the infection group and decreased in the infection-tumor group. However, the expression level was not changed in the infection-metastasis group compared to the infection or control-metastasis groups. Although SDF-1 and IL-4 were increased in the infection group, there was no significant change in expression in the infection-tumor group or the infection-metastasis group. Additionally, IL-4 and KC were increased in the infection-tumor group compared to the control-tumor group, but there was no difference in expression between the control-metastasis group and the infection-metastasis group. CXCL13 was significantly increased in the infection-metastasis group only. These results suggest that T. spiralis infection reduced tumor growth and metastasis through a complex transition in cytokine regulation profiles including CXCL9, CXCL10, and CXCL13.


Annals of the New York Academy of Sciences | 2012

Thymosin β4 stabilizes hypoxia‐inducible factor‐1α protein in an oxygen‐independent manner

Mee Sun Ock; Kyoung Seob Song; Hynda K. Kleinman; Hee-Jae Cha

The small actin‐binding protein thymosin β4 (Tβ4) is understood to stimulate angiogenesis. Previously, we reported that Tβ4 induces angiogenesis by increasing vascular endothelial growth factor (VEGF) expression, but the mechanism underlying how Tβ4 upregulates VEGF expression remain unknown. To identify the mechanism of VEGF induction by Tβ4, we measured VEGF promoter activity and analyzed the effect of Tβ4 on VEGF RNA stability. The Tβ4 peptide had no effect on either VEGF promoter activity or VEGF RNA stability. We focused on the possibility that Tβ4 may indirectly induce VEGF expression via hypoxia‐inducible factor (HIF)‐1α. We determined that Tβ4 increased the stability of HIF‐1α protein under normoxic conditions. These data suggest that Tβ4 indirectly induces VEGF expression by increasing the protein stability of HIF‐1α in an oxygen‐independent manner.


Scientific Reports | 2016

Regulation of Airway Inflammation by G-protein Regulatory Motif Peptides of AGS3 protein

Il-Whan Choi; Do Whan Ahn; Jang-Kyu Choi; Hee-Jae Cha; Mee Sun Ock; Eunae You; Sangmyung Rhee; Kwang Chul Kim; Yung Hyun Choi; Kyoung Seob Song

Respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), and lung infections have critical consequences on mortality and morbidity in humans. The aims of the present study were to examine the mechanisms by which CXCL12 affects MUC1 transcription and airway inflammation, which depend on activator of G-protein signaling (AGS) 3 and to identify specific molecules that suppress CXCL12-induced airway inflammation by acting on G-protein-coupled receptors. Herein, AGS3 suppresses CXCL12-mediated upregulation of MUC1 and TNFα by regulating Gαi. We found that the G-protein regulatory (GPR) motif peptide in AGS3 binds to Gαi and downregulates MUC1 expression; in contrast, this motif upregulates TNFα expression. Mutated GPR Q34A peptide increased the expression of MUC1 and TGFβ but decreased the expression of TNFα and IL-6. Moreover, CXCR4-induced dendritic extensions in 2D and 3D matrix cultures were inhibited by the GPR Q34A peptide compared with a wild-type GPR peptide. The GPR Q34A peptide also inhibited CXCL12-induced morphological changes and inflammatory cell infiltration in the mouse lung, and production of inflammatory cytokines in bronchoalveolar lavage (BAL) fluid and the lungs. Our data indicate that the GPR motif of AGS3 is critical for regulating MUC1/Muc1 expression and cytokine production in the inflammatory microenvironment.


Mediators of Inflammation | 2016

IL-1ra Secreted by ATP-Induced P2Y2 Negatively Regulates MUC5AC Overproduction via PLCβ3 during Airway Inflammation

Jee-Yeong Jeong; Jiwook Kim; Bokyoum Kim; Joowon Kim; Yusom Shin; Ju Deok Kim; Sie-Jeong Ryu; Yu-Mi Yang; Kyoung Seob Song

Mucus secretion is often uncontrolled in many airway inflammatory diseases of humans. Identifying the regulatory pathway(s) of mucus gene expression, mucus overproduction, and hypersecretion is important to alleviate airway inflammation in these diseases. However, the regulatory signaling pathway controlling mucus overproduction has not been fully identified yet. In this study, we report that the ATP/P2Y2 complex secretes many cytokines and chemokines to regulate airway inflammation, among which IL-1 receptor antagonist (IL-1ra) downregulates MUC5AC gene expression via the inhibition of Gαq-induced Ca2+ signaling. IL-1ra inhibited IL-1α protein expression and secretion, and vice versa. Interestingly, ATP/P2Y2-induced IL-1ra and IL-1α secretion were both mediated by PLCβ3. A dominant-negative mutation in the PDZ-binding domain of PLCβ3 inhibited ATP/P2Y2-induced IL-1ra and IL-1α secretion. IL-1α in the presence of the ATP/P2Y2 complex activated the ERK1/2 pathway in a greater degree and for a longer duration than the ATP/P2Y2 complex itself, which was dramatically inhibited by IL-1ra. These findings suggest that secreted IL-1ra exhibits a regulatory effect on ATP/P2Y2-induced MUC5AC gene expression, through inhibition of IL-1α secretion, to maintain the mucus homeostasis in the airway. Therefore, IL-1ra could be an excellent modality for regulating inflamed airway microenvironments in respiratory diseases.


Journal of Biochemistry and Molecular Biology | 2017

Airborne particulate matter increases MUC5AC expression by downregulating Claudin-1 expression in human airway cells

Sang-Su Kim; Cheol Hong Kim; Ji Wook Kim; Hsi Chiang Kung; Tae Woo Park; Yu Som Shin; Ju Deok Kim; Siejeong Ryu; Wang-Joon Kim; Yung Hyun Choi; Kyoung Seob Song

CLB2.0, a constituent of PM, induces secretion of multiple cytokines and chemokines that regulate airway inflammation. Specifically, IL-6 upregulates CLB2.0-induced MUC5AC and MUC1 expression. Interestingly, of the tight junction proteins examined, claudin-1 expression was inhibited by CLB2.0. While the overexpression of claudin-1 decreased CLB2.0-induced MUC5AC expression, it increased the expression of the anti-inflammatory mucin, MUC1. CLB2.0-induced IL-6 secretion was mediated by ROS. The ROS scavenger N-acetylcysteine inhibited CLB2.0-induced IL-6 secretion, thereby decreasing the CLB2.0-induced MUC5AC expression, whereas CLB2.0-induced MUC1 expression increased. CLB2.0 activated the ERK1/2 MAPK via a ROS-dependent pathway. ERK1/2 downregulated the claudin-1 and MUC1 expressions, whereas it dramatically increased CLB2.0-induced MUC5AC expression. These findings suggest that CLB2.0-induced ERK1/2 activation acts as a switch for regulating inflammatory conditions though a ROS-dependent pathway. Our data also suggest that secreted IL-6 regulates CLB2.0-induced MUC5AC and MUC1 expression via ROS-mediated downregulation of claudin-1 expression to maintain mucus homeostasis in the airway.


Genes & Genomics | 2014

ATP significantly increases P2Y2-dependent RANTES secretion and overexpression in human airway epithelial cells

Jee-Yeong Jeong; Hee-Jae Cha; Kyoung Seob Song

Uncontrolled inflammation is frequently observed in human respiratory diseases. Extracellular ATP can induce a number of physiological phenomena via binding to purinergic receptors. In spite of the fact that ATP has long been known as a proinflammatory mediator in the airway, the signaling pathway mechanism is still unclear. Here we show that ATP increases RANTES secretion and overexpression in a time-dependent manner and siRNA-P2Y2 significantly decreases RANTES secretion and overexpression. These results suggest that ATP can induce secretion and overexpression of the RANTES chemokine via a P2Y2 Gαq coupled receptor-dependent manner. In addition, pharmacological inhibition of ERK1/2 MAPK by U0126 suppressed ATP/P2Y2-induced RANTES overexpression in the human airway epithelium. These results show that RANTES secretion and overexpression are regulated by a P2Y2 receptor and the ATP/P2Y2 signaling complex may be critical for airway inflammation in respiratory diseases. Taken together, our investigation provides novel insight into the physiological functions of the P2Y2 receptor and enhances our understanding of the inflamed microenvironment in the airway.

Collaboration


Dive into the Kyoung Seob Song's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eun-Ji Ko

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Gi-Young Kim

Jeju National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge