Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kyounghyun Kim is active.

Publication


Featured researches published by Kyounghyun Kim.


Oncogene | 2013

HOTAIR IS A NEGATIVE PROGNOSTIC FACTOR AND EXHIBITS PRO-ONCOGENIC ACTIVITY IN PANCREATIC CANCER

Kyounghyun Kim; Indira Jutooru; Gayathri Chadalapaka; Greg A. Johnson; James H. Frank; Robert C. Burghardt; Sang Bae Kim; Stephen Safe

HOTAIR is a long intervening non-coding RNA (lincRNA) that associates with the Polycomb Repressive Complex 2 (PRC2) and overexpression is correlated with poor survival for breast, colon and liver cancer patients. In this study, we show that HOTAIR expression is increased in pancreatic tumors compared with non-tumor tissue and is associated with more aggressive tumors. Knockdown of HOTAIR (siHOTAIR) by RNA interference shows that HOTAIR has an important role in pancreatic cancer cell invasion, as reported in other cancer cell lines. In contrast, HOTAIR knockdown in Panc1 and L3.6pL pancreatic cancer cells that overexpress this lincRNA decreased cell proliferation, altered cell cycle progression and induced apoptosis, demonstrating an expanded function of HOTAIR in pancreatic cancer cells compared with other cancer cell lines. Results of gene array studies showed that there was minimal overlap between HOTAIR-regulated genes in pancreatic cells and breast cancer cells, and HOTAIR uniquely suppressed several interferon-related genes and gene sets related to cell cycle progression in pancreatic cancer cells and tumors. Analysis of selected genes suppressed by HOTAIR in Panc1 and L3.6pL cells showed by knockdown of EZH2 and chromatin immunoprecipitation assays that HOTAIR-mediated gene repression was both PRC2-dependent and -independent. HOTAIR knockdown in L3.6pL cells inhibited tumor growth in mouse xenograft model, further demonstrating the pro-oncogenic function of HOTAIR in pancreatic cancer.


Oncogene | 2012

Identification of oncogenic microRNA-17-92/ZBTB4/specificity protein axis in breast cancer.

Kyounghyun Kim; Gayathri Chadalapaka; Syng-Ook Lee; Daisuke Yamada; Xavier Sastre-Garau; Pierre-Antoine Defossez; Yun-Yong Park; J. Lee; Stephen Safe

The human POK family members are transcription factors with a POZ domain and zinc-fingers that act primarily as transcriptional repressors. Several members of this family are involved in oncogenesis and this prompted us to assess whether expression levels of individual POK family members are associated with clinical outcomes in cancer. We have observed that ZBTB4 (zinc-finger and BTB domain containing 4) is downregulated in breast cancer patients, and that its expression is significantly correlated with relapse-free survival. Further integrative analysis of mRNA and microRNA (miR) expression data from the NCI-60 cell lines revealed an inverse correlation between ZBTB4 and oncogenic miRs derived from the miR-17-92 cluster and its paralogs. The experimental results using MDA-MB-231 and MCF-7 human breast cancer cells confirm that miRNAs derived from these clusters, containing miR-17-5p, miR-20a, miR-106a, miR-106b and miR-93, negatively regulate ZBTB4 expression. Overexpression of ZBTB4 or restoration of ZBTB4 by using an antagomir inhibit growth and invasion of breast cancer cells, and this effect is due, in part, to ZBTB4-dependent repression of the specificity protein 1 (Sp1), Sp3 and Sp4 genes, and subsequent downregulation of several Sp-dependent oncogenes, in part, through competition between ZBTB4 and Sp transcription factors for GC-rich promoter sequences. These results confirm that ZBTB4 functions as a novel tumor-suppressor gene with prognostic significance for breast cancer survival, and the oncogenic miR-17-92/ZBTB4/Sp axis may be a potential therapeutic target.


BMC Cancer | 2012

Curcumin and synthetic analogs induce reactive oxygen species and decreases specificity protein (Sp) transcription factors by targeting microRNAs

Shruti U. Gandhy; Kyounghyun Kim; Lesley Larsen; Rhonda J. Rosengren; Stephen Safe

BackgroundCurcumin inhibits growth of several cancer cell lines, and studies in this laboratory in bladder and pancreatic cancer cells show that curcumin downregulates specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 and pro-oncogenic Sp-regulated genes. In this study, we investigated the anticancer activity of curcumin and several synthetic cyclohexanone and piperidine analogs in colon cancer cells.MethodsThe effects of curcumin and synthetic analogs on colon cancer cell proliferation and apoptosis were determined using standardized assays. The changes in Sp proteins and Sp-regulated gene products were analysed by western blots, and real time PCR was used to determine microRNA-27a (miR-27a), miR-20a, miR-17-5p and ZBTB10 and ZBTB4 mRNA expression.ResultsThe IC50 (half-maximal) values for growth inhibition (24 hr) of colon cancer cells by curcumin and synthetic cyclohexanone and piperidine analogs of curcumin varied from 10 μM for curcumin to 0.7 μM for the most active synthetic piperidine analog RL197, which was used along with curcumin as model agents in this study. Curcumin and RL197 inhibited RKO and SW480 colon cancer cell growth and induced apoptosis, and this was accompanied by downregulation of specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 and Sp-regulated genes including the epidermal growth factor receptor (EGFR), hepatocyte growth factor receptor (c-MET), survivin, bcl-2, cyclin D1 and NFκB (p65 and p50). Curcumin and RL197 also induced reactive oxygen species (ROS), and cotreatment with the antioxidant glutathione significantly attenuated curcumin- and RL197-induced growth inhibition and downregulation of Sp1, Sp3, Sp4 and Sp-regulated genes. The mechanism of curcumin-/RL197-induced repression of Sp transcription factors was ROS-dependent and due to induction of the Sp repressors ZBTB10 and ZBTB4 and downregulation of microRNAs (miR)-27a, miR-20a and miR-17-5p that regulate these repressors.ConclusionsThese results identify a new and highly potent curcumin derivative and demonstrate that in cells where curcumin and RL197 induce ROS, an important underlying mechanism of action involves perturbation of miR-ZBTB10/ZBTB4, resulting in the induction of these repressors which downregulate Sp transcription factors and Sp-regulated genes.


Endocrinology | 2010

MicroRNA-27a Indirectly Regulates Estrogen Receptor α Expression and Hormone Responsiveness in MCF-7 Breast Cancer Cells

Xiangrong Li; Susanne U. Mertens-Talcott; Shu Zhang; Kyounghyun Kim; Judith Ball; Stephen Safe

MicroRNA-27a (miR-27a) is expressed in MCF-7 breast cancer cells, and antisense miR-27a (as-miR-27a) induces ZBTB10, a specificity protein (Sp) repressor. Both as-miR-27a and overexpression of ZBTB10 decreased Sp1, Sp3, and Sp4 mRNA and protein expression in MCF-7 cells, and this was also accompanied by decreased levels of estrogen receptor alpha (ERalpha) mRNA and protein. RNA interference studies confirmed that basal expression of ERalpha was dependent on Sp1 but not Sp3 or Sp4 in MCF-7 cells. as-miR-27a and overexpression of ZBTB10 inhibited 17beta-estradiol (E2)-induced transactivation in MCF-7 cells, and this was accompanied by decreased binding of Sp and ER proteins in cell lysates to oligonucleotides containing GC-rich motifs or estrogen-responsive elements, respectively. as-miR-27a and overexpression of ZBTB10 arrested MCF-7 cells in G(0)/G(1) and inhibited E2-induced G(0)/G(1) to S phase progression. as-miR-27a induced only a minimal increase in Myt-1, another miR-27a regulated gene, and this was not accompanied by Myt-1-dependent G(2)/M arrest as observed previously in ER-negative MDA-MB-231 breast cancer cells. Thus, miR-27a indirectly regulates E2-responsiveness in MCF-7 cells through suppression of ZBTB10, thereby enhancing expression of ERalpha.


PLOS ONE | 2011

Gene expression signature analysis identifies vorinostat as a candidate therapy for gastric cancer

Sofie Claerhout; Jae Yun Lim; Woonyoung Choi; Yun Yong Park; Kyounghyun Kim; Sang Bae Kim; Ju Seog Lee; Gordon B. Mills; Jae Yong Cho

Background Gastric cancer continues to be one of the deadliest cancers in the world and therefore identification of new drugs targeting this type of cancer is thus of significant importance. The purpose of this study was to identify and validate a therapeutic agent which might improve the outcomes for gastric cancer patients in the future. Methodology/Principal Findings Using microarray technology, we generated a gene expression profile of human gastric cancer–specific genes from human gastric cancer tissue samples. We used this profile in the Broad Institutes Connectivity Map analysis to identify candidate therapeutic compounds for gastric cancer. We found the histone deacetylase inhibitor vorinostat as the lead compound and thus a potential therapeutic drug for gastric cancer. Vorinostat induced both apoptosis and autophagy in gastric cancer cell lines. Pharmacological and genetic inhibition of autophagy however, increased the therapeutic efficacy of vorinostat, indicating that a combination of vorinostat with autophagy inhibitors may therapeutically be more beneficial. Moreover, gene expression analysis of gastric cancer identified a collection of genes (ITGB5, TYMS, MYB, APOC1, CBX5, PLA2G2A, and KIF20A) whose expression was elevated in gastric tumor tissue and downregulated more than 2-fold by vorinostat treatment in gastric cancer cell lines. In contrast, SCGB2A1, TCN1, CFD, APLP1, and NQO1 manifested a reversed pattern. Conclusions/Significance We showed that analysis of gene expression signature may represent an emerging approach to discover therapeutic agents for gastric cancer, such as vorinostat. The observation of altered gene expression after vorinostat treatment may provide the clue to identify the molecular mechanism of vorinostat and those patients likely to benefit from vorinostat treatment.


Molecular and Cellular Biology | 2014

Mechanism of Action of Phenethylisothiocyanate and Other Reactive Oxygen Species-Inducing Anticancer Agents

Indira Jutooru; Aaron S. Guthrie; Gayathri Chadalapaka; Satya S. Pathi; Kyounghyun Kim; Robert C. Burghardt; Un-Ho Jin; Stephen Safe

ABSTRACT Reactive oxygen species (ROS)-inducing anticancer agents such as phenethylisothiocyanate (PEITC) activate stress pathways for killing cancer cells. Here we demonstrate that PEITC-induced ROS decreased expression of microRNA 27a (miR-27a)/miR-20a:miR-17-5p and induced miR-regulated ZBTB10/ZBTB4 and ZBTB34 transcriptional repressors, which, in turn, downregulate specificity protein (Sp) transcription factors (TFs) Sp1, Sp3, and Sp4 in pancreatic cancer cells. Decreased expression of miR-27a/miR-20a:miR-17-5p by PEITC-induced ROS is a key step in triggering the miR-ZBTB Sp cascade leading to downregulation of Sp TFs, and this is due to ROS-dependent epigenetic effects associated with genome-wide shifts in repressor complexes, resulting in decreased expression of Myc and the Myc-regulated miRs. Knockdown of Sp1 alone by RNA interference also induced apoptosis and decreased pancreatic cancer cell growth and invasion, indicating that downregulation of Sp transcription factors is an important common mechanism of action for PEITC and other ROS-inducing anticancer agents.


Carcinogenesis | 2012

FOXM1 mediates Dox resistance in breast cancer by enhancing DNA repair

Yun Yong Park; Sung Yun Jung; Nicholas B. Jennings; Cristian Rodriguez-Aguayo; Guang Peng; Se Ran Lee; Sang Bae Kim; Kyounghyun Kim; Sun Hee Leem; Shiaw Yih Lin; Gabriel Lopez-Berestein; Anil K. Sood; Ju Seog Lee

Transcription factors are direct effectors of altered signaling pathways in cancer and frequently determine clinical outcomes in cancer patients. To uncover new transcription factors that would determine clinical outcomes in breast cancer, we systematically analyzed gene expression data from breast cancer patients. Our results revealed that Forkhead box protein M1 (FOXM1) is the top-ranked survival-associated transcription factor in patients with triple-negative breast cancer. Surprisingly, silencing FOXM1 expression led breast cancer cells to become more sensitive to doxorubicin (Dox). We found that FOXM1-dependent resistance to Dox is mediated by regulating DNA repair genes. We further demonstrated that NFκB1 interacts with FOXM1 in the presence of Dox to protect breast cancer cells from DNA damage. Finally, silencing FOXM1 expression in breast cancer cells in a mouse xenograft model significantly sensitized the cells to Dox. Our systematic approaches identified an unexpected role of FOXM1 in Dox resistance by regulating DNA repair genes, and our findings provide mechanistic insights into how FOXM1 mediates resistance to Dox and evidence that FOXM1 may be a promising therapeutic target for sensitizing breast cancer cells to Dox.


Oncogene | 2012

The Nuclear Receptor TR3 Regulates mTORC1 Signaling in Lung Cancer Cells Expressing Wild-type p53

Syng-Ook Lee; Terrick Andey; Un-Ho Jin; Kyounghyun Kim; Mandip Sachdeva; Stephen Safe

The orphan nuclear receptor TR3 (NR41A and Nur77) is overexpressed in most lung cancer patients and is a negative prognostic factor for patient survival. The function of TR3 was investigated in non-small-cell lung cancer A549 and H460 cells, and knockdown of TR3 by RNA interference (siTR3) inhibited cancer cell growth and induced apoptosis. The prosurvival activity of TR3 was due, in part, to formation of a p300/TR3/ specificity protein 1 complex bound to GC-rich promoter regions of survivin and other Sp-regulated genes (mechanism 1). However, in p53 wild-type A549 and H460 cells, siTR3 inhibited the mTORC1 pathway, and this was due to activation of p53 and induction of the p53-responsive gene sestrin 2, which subsequently activated the mTORC1 inhibitor AMP-activated protein kinase α (AMPKα) (mechanism 2). This demonstrates that the pro-oncogenic activity of TR3 in lung cancer cells was due to inhibition of p53 and activation of mTORC1. 1,1-Bis(3’-indolyl)-1-(p-hydroxyphenyl)methane (DIM-C-pPhOH) is a recently discovered inhibitor of TR3, which mimics the effects of siTR3. DIM-C-pPhOH inhibited growth and induced apoptosis in lung cancer cells and lung tumors in murine orthotopic and metastatic models, and this was accompanied by decreased expression of survivin and inhibition of mTORC1 signaling, demonstrating that inactivators of TR3 represent a novel class of mTORC1 inhibitors.


Molecular Cancer Therapeutics | 2012

Aryl Hydrocarbon Receptor Agonists Induce MicroRNA-335 Expression and Inhibit Lung Metastasis of Estrogen Receptor Negative Breast Cancer Cells

Shu Zhang; Kyounghyun Kim; Un-Ho Jin; Catherine Pfent; Huojun Cao; Brad A. Amendt; Xinyi Liu; Heather Wilson-Robles; Stephen Safe

The aryl hydrocarbon receptor (AHR) was initially identified as a receptor that bound 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related environmental toxicants; however, there is increasing evidence that the AHR is an important new drug target for treating multiple diseases including breast cancer. Treatment of estrogen receptor (ER)-negative MDA-MB-231 and BT474 breast cancer cells with TCDD or the selective AHR modulator 6-methyl-1,3,-trichlorodibenzofuran (MCDF) inhibited breast cancer cell invasion in a Boyden chamber assay. These results were similar to those previously reported for the antimetastic microRNA-335 (miR-335). Both TCDD and MCDF induced miR-335 in MDA-MB-231 and BT474 cells and this was accompanied by downregulation of SOX4, a miR-335-regulated (inhibited) gene. The effects of TCDD and MCDF on miR-335 and SOX4 expression and interactions of miR-335 with the 3′-UTR target sequence in the SOX4 gene were all inhibited in cells transfected with an oligonucleotide (iAHR) that knocks down the AHR, thus confirming AHR-miR-335 interactions. MCDF (40 mg/kg/d) also inhibited lung metastasis of MDA-MB-231 cells in a tail vein injection model, showing that the AHR is a potential new target for treating patients with ER-negative breast cancer, a disease where treatment options and their effectiveness are limited. Mol Cancer Ther; 11(1); 108–18. ©2011 AACR.


Molecular Cancer Therapeutics | 2012

Betulinic Acid Targets YY1 and ErbB2 through Cannabinoid Receptor-dependent Disruption of MicroRNA-27a:ZBTB10 in Breast Cancer

Xinyi Liu; Indira Jutooru; Ping Lei; Kyounghyun Kim; Syng-Ook Lee; Lisa K. Brents; Paul L. Prather; Stephen Safe

Treatment of ErbB2-overexpressing BT474 and MDA-MB-453 breast cancer cells with 1 to 10 μmol/L betulinic acid inhibited cell growth, induced apoptosis, downregulated specificity protein (Sp) transcription factors Sp1, Sp3, and Sp4, and decreased expression of ErbB2. Individual or combined knockdown of Sp1, Sp3, Sp4 by RNA interference also decreased expression of ErbB2 and this response was because of repression of YY1, an Sp-regulated gene. Betulinic acid–dependent repression of Sp1, Sp3, Sp4, and Sp-regulated genes was due, in part, to induction of the Sp repressor ZBTB10 and downregulation of microRNA-27a (miR-27a), which constitutively inhibits ZBTB10 expression, and we show for the first time that the effects of betulinic acid on the miR-27a:ZBTB10-Sp transcription factor axis were cannabinoid 1 (CB1) and CB2 receptor–dependent, thus identifying a new cellular target for this anticancer agent. Mol Cancer Ther; 11(7); 1421–31. ©2012 AACR.

Collaboration


Dive into the Kyounghyun Kim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sang Bae Kim

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Ju Seog Lee

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Yun Yong Park

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge