Kyra E. Pyke
Queen's University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kyra E. Pyke.
American Journal of Physiology-heart and Circulatory Physiology | 2011
Dick H. J. Thijssen; Mark A. Black; Kyra E. Pyke; Jaume Padilla; Greg Atkinson; Ryan A. Harris; Beth A. Parker; Michael E. Widlansky; Michael E. Tschakovsky; Daniel J. Green
Endothelial dysfunction is now considered an important early event in the development of atherosclerosis, which precedes gross morphological signs and clinical symptoms. The assessment of flow-mediated dilation (FMD) was introduced almost 20 years ago as a noninvasive approach to examine vasodilator function in vivo. FMD is widely believed to reflect endothelium-dependent and largely nitric oxide-mediated arterial function and has been used as a surrogate marker of vascular health. This noninvasive technique has been used to compare groups of subjects and to evaluate the impact of interventions within individuals. Despite its widespread adoption, there is considerable variability between studies with respect to the protocols applied, methods of analysis, and interpretation of results. Moreover, differences in methodological approaches have important impacts on the response magnitude, can result in spurious data interpretation, and limit the comparability of outcomes between studies. This review results from a collegial discussion between physiologists with the purpose of developing considered guidelines. The contributors represent several distinct research groups that have independently worked to advance the evidence base for improvement of the technical approaches to FMD measurement and analysis. The outcome is a series of recommendations on the basis of review and critical appraisal of recent physiological studies, pertaining to the most appropriate methods to assess FMD in humans.
The Journal of Physiology | 2005
Kyra E. Pyke; Michael E. Tschakovsky
Endothelium‐dependent flow‐mediated dilatation (FMD) describes the vasodilatory response of a vessel to elevations in blood flow‐associated shear stress. Nitric oxide (NO), one of many vasoactive substances released by the endothelium in response to shear stress, is of particular interest to researchers as it is an antiatherogenic molecule, and a reduction in its bioavailability may play a role in the pathogenesis of vascular disease. The goal of many human studies is to create a shear stress stimulus that produces an NO‐dependent response in order to use the FMD measurements as an assay of NO bioavailability. The most common non‐invasive technique is the ‘reactive hyperaemia test’ which produces a large, transient shear stress profile and a corresponding FMD. Importantly, not all FMD is NO mediated and the stimulus creation technique is a critical determinant of NO dependence. The purpose of this review is to (1) explain that the mechanisms of FMD depend on the nature of the shear stress stimulus (stimulus response specificity), (2) provide an update to the current guidelines for FMD assessment, and (3) summarize the issues that surround the clinical utility of measuring both NO‐ and non‐NO‐mediated FMD. Future research should include (1) the identification and partitioning of mechanisms responsible for FMD in response to various shear stress profiles, (2) investigation of stimulus response specificity in coronary arteries, and (3) investigation of non‐NO FMD mechanisms and their connection to the development of vascular disease and occurrence of cardiovascular events.
American Journal of Physiology-heart and Circulatory Physiology | 2010
Kyra E. Pyke; Daniel J. Green; Cara J. Weisbrod; Matthew Best; L. Dembo; Gerry O'Driscoll; Michael E. Tschakovsky
This study investigated the nitric oxide (NO) dependence of radial artery (RA) flow-mediated dilation (FMD) in response to three different reactive hyperemia (RH) shear stimulus profiles. Ten healthy males underwent the following three RH trials: 1) 5 min occlusion (5 trial), 2) 10 min occlusion (10 trial), and 3) 10 min occlusion with cuff reinflation at 30 s (10-30 trial). Trials were performed during saline infusion and repeated during N(G)-monomethyl-L-arginine (L-NMMA) infusion in the brachial artery. RA blood flow velocity was measured with Doppler ultrasound, and B-mode RA images were analyzed using automated edge detection software. Shear rate estimation of shear stress was calculated as the blood flow velocity/vessel diameter. L-NMMA decreased baseline vascular conductance by 35%. L-NMMA infusion did not affect the peak shear rate stimulus (P = 0.681) or the area under the curve (AUC) of shear rate to peak FMD (P = 0.088). The AUC was significantly larger in the 10 trial vs. the 10-30 or 5 trial (P < 0.001). Although percent FMD (%change in diameter) in the 10 trial was larger than that in the 5 trial (P = 0.035), there was no significant difference in %FMD between the saline and L-NMMA conditions in any trial: 5 trial, 5.62 +/- 1.48 vs. 5.63 +/- 1.27%; 10 trial, 9.07 +/- 1.16 vs. 11.22 +/- 2.21%; 10-30 trial, 6.52 +/- 1.43 vs. 7.98 +/- 1.51% for saline and L-NMMA, respectively (P = 0.158). We conclude the following: 1) RH following 10 min of occlusion results in an enhanced stimulus and %FMD compared with 5 min of occlusion. 2) When the occlusion cuff is reinflated 30 s postrelease of a 10 min occlusion, it does not result in an enhanced %FMD compared with that which results from RH following 5 min of occlusion. 3) The lack of effect of L-NMMA on FMD suggests that NO may not be obligatory for radial artery FMD in response to either 5 or 10 min of occlusion in healthy volunteers.
American Journal of Physiology-heart and Circulatory Physiology | 2008
Kyra E. Pyke; Veronica J. Poitras; Michael E. Tschakovsky
Exercise elevates shear stress in the supplying conduit artery. Although this is the most relevant physiological stimulus for flow-mediated dilation (FMD), the fluctuating pattern of shear that occurs may influence the shear stress-FMD stimulus response relationship. This study tested the hypothesis that the brachial artery FMD response to a step increase in shear is influenced by the fluctuating characteristics of the stimulus, as evoked by forearm exercise. In 16 healthy subjects, we examined FMD responses to step increases in shear rate in three conditions: stable shear upstream of heat-induced forearm vasodilation (FHStable); fluctuating shear upstream of heat-induced forearm vasodilation and rhythmic forearm cuff inflation/deflation (FHFluctuating); and fluctuating shear upstream of exercise-induced forearm vasodilation (FEStep Increase). The mean increase in shear rate (+/-SD) was the same in all trials (FHFluctuating): 51.69 +/- 15.70 s(-1); FHStable: 52.16 +/- 14.10 s(-1); FEStep Increase: 50.14 +/- 13.03 s(-1) P = 0.131). However, the FHFluctuating and FEStep Increase trials resulted in a fluctuating shear stress stimulus with rhythmic high and low shear periods that were 96.18 +/- 24.54 and 11.80 +/- 7.30 s(-1), respectively. The initial phase of FMD (phase I) was followed by a second, delayed-onset FMD and was not different between conditions (phase I: FHFluctuating: 5.63 +/- 2.15%; FHStable: 5.33 +/- 1.85%; FEStep Increase: 5.30 +/- 2.03%; end-trial: FHFluctuating: 7.76 +/- 3.40%; FHStable: 7.00 +/- 3.03%; FEStep Increase: 6.68 +/- 3.04%; P = 0.196). Phase I speed also did not differ (P = 0.685). In conclusion, the endothelium transduced the mean shear when exposed to shear fluctuations created by a typical handgrip protocol. Muscle activation did not alter the FMD response. Forearm exercise may provide a viable technique to investigate brachial artery FMD in humans.
Journal of Applied Physiology | 2008
Kyra E. Pyke; John A. Hartnett; Michael E. Tschakovsky
The purpose of this study was to determine the dynamic characteristics of brachial artery dilation in response to step increases in shear stress [flow-mediated dilation (FMD)]. Brachial artery diameter (BAD) and mean blood velocity (MBV) (Doppler ultrasound) were obtained in 15 healthy subjects. Step increases in MBV at two shear stimulus magnitudes were investigated: large (L; maximal MBV attainable), and small (S; MBV at 50% of the large step). Increase in shear rate (estimate of shear stress: MBV/BAD) was 76.8 +/- 15.6 s(-1) for L and 41.4 +/- 8.7 s(-1) for S. The peak %FMD was 14.5 +/- 3.8% for L and 5.7 +/- 2.1% for S (P < 0.001). Both the L (all subjects) and the S step trials (12 of 15 subjects) elicited a biphasic diameter response with a fast initial phase (phase I) followed by a slower final phase. Relative contribution of phase I to total FMD when two phases occurred was not sensitive to shear rate magnitude (r(2) = 0.003, slope P = 0.775). Parameters quantifying the dynamics of the FMD response [time delay (TD), time constant (tau)] were also not sensitive to shear rate magnitude for both phases (phase I: TD r(2) = 0.03, slope P = 0.376, tau r(2) = 0.04, slope P = 0.261; final phase: TD r(2) = 0.07, slope P = 0.169, tau r(2) = 0.07, slope P = 0.996). These data support the existence of two distinct mechanisms, or sets of mechanisms, in the human conduit artery FMD response that are proportionally sensitive to shear stimulus magnitude and whose dynamic response is not sensitive to shear stimulus magnitude.
American Journal of Physiology-heart and Circulatory Physiology | 2011
Kyra E. Pyke; F. Jazuli
Reactive hyperemia (RH) creates an uncontrolled, transient increase in brachial artery (BA) shear stress (SS) for flow-mediated dilation (FMD) assessment. In contrast, handgrip exercise (HGEX) can create similar, sustained SS increases over repeated trials. The purpose of this study was to examine the impact of repeated SS elevation via RH or HGEX and the relationship between RH and HGEX %FMD. BA diameter and blood velocity were assessed with echo and Doppler ultrasound in 20 healthy subjects. Visit A consisted of four 6-min HGEX trials (HGEX trials 1-4) at the intensity required to achieve a shear rate (SR = mean blood velocity/BA diameter; an estimate of SS) of 65 s(-1). Visit B consisted of four RH trials (RH trials 1-4). The RH SR area under the curve (AUC) was higher in trial 1 versus trial 3 and trial 4 (P = 0.019 and 0.047). The HGEX mean SR was similar across trials (mean SR = 66.1 ± 5.8 s(-1), P = 0.152). There were no differences in %FMD across trials or tests (RH trial 1: 6.9 ± 3.5%, trial 2: 6.9 ± 2.3%, trial 3: 7.1 ± 3.5%, and trial 4: 7.0 ± 2.8%; HGEX trial 1: 7.3 ± 3.6%, trial 2: 7.0 ± 3.6%, trial 3: 6.5 ± 3.5%, and trial 4: 6.8 ± 2.9%, P = 0.913). No relationship between subjects RH %FMD and HGEX %FMD was detected (r(2) = 0.12, P = 0.137). However, with response normalization, a relationship emerged (RH %FMD/SR AUC vs. HGEX %FMD/mean SR, r(2) = 0.44, P = 0.002). In conclusion, with repeat trials, there were no systematic changes in RH or HGEX %FMD. The relationship between normalized RH and HGEX %FMD suggests that endothelial responses to different SS profiles provide related information regarding endothelial function.
American Journal of Physiology-heart and Circulatory Physiology | 2011
F. Jazuli; Kyra E. Pyke
An inverse relationship between baseline artery diameter (BAD) and flow-mediated vasodilation (FMD) has been identified using reactive hyperemia (RH) to create a shear stress (SS) stimulus in human conduit arteries. However, RH creates a SS stimulus that is inversely related to BAD. The purpose of this study was to compare FMD in response to matched levels of SS in two differently sized upper limb arteries [brachial (BA) and radial (RA) artery]. With the use of exercise, three distinct, shear rate (SR) stimuli were created (SR = blood velocity/vessel diameter; estimate of SS) in the RA and BA. Artery diameter and mean blood velocity were assessed with echo and Doppler ultrasound in 15 healthy male subjects (19-25 yr). Data are means ± SE. Subjects performed 6 min of adductor pollicis and handgrip exercise to increase SR in the RA and BA, respectively. Exercise intensity was modulated to achieve uniformity in SR between arteries. The three distinct SR levels were as follows: steady-state exercise 39.8 ± 0.6, 57.3 ± 0.7, and 72.4 ± 1.2 s(-1) (P < 0.001). %FMD and AbsFMD (mm) at the end of exercise were greater in the RA vs. the BA at each shear level [at the highest level: RA = 15.7 ± 1.5%, BA = 5.4 ± 0.8% (P < 0.001)]. The mean slope of the within-subject SR-%FMD regression line was greater in the RA (RA = 0.33 ± 0.04, BA = 0.13 ± 0.02, P < 0.001), and a strong within-subjects relationship between %FMD and SR was observed in both arteries (RA: r(2) = 0.92 ± 0.02; BA: r(2) = 0.90 ± 0.03). Within the RA, there was a significant relationship between baseline diameter and %FMD; however, this relationship was not present in the BA (RA: r(2) = 0.76, P < 0.001; BA: r(2) = 0.03, P = 0.541). These findings suggest that the response to SS is not uniform across differently sized vessels, which is in agreement with previous studies.
Applied Physiology, Nutrition, and Metabolism | 2013
Ingrid C. Szijgyarto; Trevor J. King; Jennifer Ku; Veronica J Poitras; Brendon J. Gurd; Kyra E. Pyke
Acute mental stress can impair brachial artery (BA) flow-mediated dilation (FMD) in response to reactive hyperemia (RH) induced increases in shear stress. Handgrip exercise (HGEX) is emerging as a useful tool to increase shear stress for FMD assessment; however, the impact of acute mental stress on HGEX-FMD is unknown. The purpose of this study was to determine whether acute mental stress attenuates RH- and HGEX-induced BA-FMD to a similar extent. In 2 counterbalanced visits, 16 healthy males (19-27 years of age) performed RH-FMD or HGEX-FMD tests after a counting control task (prestress FMD) and a speech and arithmetic stress task (poststress FMD). BA diameter and mean blood velocity were assessed with echo and Doppler ultrasound, respectively. Shear stress was estimated using shear rate (SR = BA blood velocity/BA diameter). Mean arterial pressure (MAP), heart rate (HR), and salivary cortisol were used to assess stress reactivity. Results are expressed as mean ± SE. The stress task elevated MAP (Δ24.0 ± 2.6 mm Hg) and HR (Δ15.5 ± 1.9 beats·min(-1)), but not cortisol (prestress vs. poststress: 4.4 ± 0.7 nmol·L(-1) vs. 4.7 ± 0.7 nmol·L(-1); p = 0.625). There was no difference between the pre- and poststress SR stimulus for RH (p = 0.115) or HGEX (p = 0.664). RH-FMD decreased from 5.2% ± 0.6% prestress to 4.1% ± 0.5% poststress (p = 0.071); however, stress did not attenuate HGEX-FMD (prestress vs. poststress: 4.1% ± 0.6% vs. 5.3% ± 0.6%; p = 0.154). The pre- to poststress change in FMD was significantly different in the RH-FMD vs. the HGEX-FMD test (-1.1% ± 0.6% vs. +1.1% ± 0.8%; p = 0.015). In conclusion, acute mental stress appears to have a disparate impact on FMD stimulated by RH vs. HGEX induced increases in shear stress.
Medicine and Science in Sports and Exercise | 2014
David Montero; Jaume Padilla; Candela Diaz-Cañestro; Dennis M.J. Muris; Kyra E. Pyke; Philippe Obert; Guillaume Walther
PURPOSE Controversy exists on whether endothelial function is enhanced in athletes. We sought to systematically review the literature and determine whether endothelial function, as assessed by flow-mediated dilation (FMD), is greater in athletes across all ages relative to that in their age-matched counterparts. METHODS We conducted a systematic search on MEDLINE, Cochrane, Scopus, and Web of Science since their inceptions until July 2013 for articles evaluating FMD in athletes. A meta-analysis was performed to compare the standardized mean difference (SMD) in FMD of the brachial artery between athletes and age-matched control subjects. Subgroup analyses and meta-regression were used to identify sources of heterogeneity. RESULTS Twenty-one articles were included in this analysis, comprising 530 athletes (452 endurance trained, 49 strength trained, and 29 endurance and strength trained) and 376 control subjects. After data pooling, FMD was higher in athletes than that in control groups (SMD, 0.48; P = 0.008). In subgroup analyses, young athletes (<40 yr) presented increased baseline brachial artery diameter (mean difference, 0.40 mm; P < 0.00001) and similar FMD (SMD, 0.27; P = 0.22) compared with those in controls. In contrast, master athletes (>;50 yr) showed similar baseline brachial artery diameter (mean difference, 0.04 mm; P = 0.69) and increased FMD (SMD, 0.99; P = 0.0005) compared with those in controls. CONCLUSIONS The current meta-analysis provides evidence that master athletes but not young athletes exhibit greater FMD compared with that in age-matched healthy controls, thus suggesting that the association between high levels of exercise training and increased FMD is age dependent.
Vascular Medicine | 2013
Briar B Findlay; Parnika Gupta; Ingrid C. Szijgyarto; Kyra E. Pyke
Smoking is an established risk factor for cardiovascular disease. It has also been shown to result in endothelial dysfunction as assessed by flow-mediated dilation (FMD) in response to reactive hyperemia (RH)-induced increases in shear stress. Handgrip exercise (HGEX) is an emerging alternative method to increase shear stress for FMD assessment (HGEX-FMD) and the purpose of this study was to identify the impact of smoking on HGEX-FMD in young healthy subjects. Brachial artery RH-FMD and HGEX-FMD (10-minute bout of HGEX) was assessed in eight smokers (S) and 14 non-smokers (NS) (age 21 ± 2 years). Brachial artery diameter and mean blood velocity were assessed with echo and Doppler ultrasound, respectively. Shear stress was estimated by shear rate (SR = brachial artery blood velocity/diameter). The SR stimulus did not differ between groups for either test (RH-FMD (SR area under the curve until peak diameter measurement), p = 0.897; HGEX-FMD (average SR over 10-minute exercise bout), p = 0.599). The RH-FMD magnitude was not significantly different between groups (S: 7.7 ± 2.2% vs NS: 7.9 ± 2.4%, p = 0.838); however, the HGEX-FMD magnitude was significantly impaired in smokers (S: 6.1 ± 3.4% vs NS: 9.6 ± 3.6%, p = 0.037). In conclusion, HGEX-FMD assessment detected vascular dysfunction in young healthy smokers while RH-FMD did not. This suggests that HGEX-FMD may be useful in the early detection of smoking-induced impairments in endothelial function. Further research is required to explore this phenomenon in other populations and to isolate underlying mechanisms.