Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kyriaki Bakirtzi is active.

Publication


Featured researches published by Kyriaki Bakirtzi.


Cardiovascular Research | 2009

Mechanisms for increased myocardial fatty acid utilization following short-term high-fat feeding

Jordan Wright; Jaetaek Kim; Jonathan Buchanan; Sihem Boudina; Sandra Sena; Kyriaki Bakirtzi; Olesya Ilkun; Heather Theobald; Robert C. Cooksey; Kostantin V. Kandror; E. Dale Abel

AIMS Diet-induced obesity is associated with increased myocardial fatty acid (FA) utilization, insulin resistance, and cardiac dysfunction. The study was designed to test the hypothesis that impaired glucose utilization accounts for initial changes in FA metabolism. METHODS AND RESULTS Ten-week-old C57BL6J mice were fed a high-fat diet (HFD, 45% calories from fat) or normal chow (4% calories from fat). Cardiac function and substrate metabolism in isolated working hearts, glucose uptake in isolated cardiomyocytes, mitochondrial function, insulin-stimulated protein kinase B (Akt/PKB) and Akt substrate (AS-160) phosphorylation, glucose transporter 4 (GLUT4) translocation, pyruvate dehydrogenase (PDH) activity, and mRNA levels for metabolic genes were determined after 2 or 5 weeks of HFD. Two weeks of HFD reduced basal rates of glycolysis and glucose oxidation and prevented insulin stimulation of glycolysis in hearts and reduced insulin-stimulated glucose uptake in cardiomyocytes. Insulin-stimulated Akt/PKB and AS-160 phosphorylation were preserved, and PDH activity was unchanged. GLUT4 content was reduced by 55% and GLUT4 translocation was significantly attenuated. HFD increased FA oxidation rates and myocardial oxygen consumption (MVO2), which could not be accounted for by mitochondrial uncoupling or by increased expression of peroxisome proliferator activated receptor-alpha (PPAR-alpha) target genes, which increased only after 5 weeks of HFD. CONCLUSION Rates of myocardial glucose utilization are altered early in the course of HFD because of reduced GLUT4 content and GLUT4 translocation despite normal insulin signalling to Akt/PKB and AS-160. The reciprocal increase in FA utilization is not due to PPAR-alpha-mediated signalling or mitochondrial uncoupling. Thus, the initial increase in myocardial FA utilization in response to HFD likely results from impaired glucose transport that precedes impaired insulin signalling.


Gastroenterology | 2011

Neurotensin Signaling Activates MicroRNAs-21 and -155 and Akt, Promotes Tumor Growth in Mice, and Is Increased in Human Colon Tumors

Kyriaki Bakirtzi; Maria Hatziapostolou; Iordanes Karagiannides; Christos Polytarchou; Savina Jaeger; Dimitrios Iliopoulos; Charalabos Pothoulakis

BACKGROUND & AIMS Neurotensin promotes inflammation and colon cancer via the neurotensin-1 receptor (NTR1). MicroRNAs (miR) regulate protein synthesis by degrading or preventing translation of mRNAs. We analyzed expression of 365 different microRNAs by human colonic epithelial cells (NCM460) after activation of NTR1. METHODS We performed microarray analysis of mRNA expression by neurotensin-stimulated NCM460 cells that overexpressed NTR1. Nuclear factor-κB (NF-κB) binding sites were identified and tumorigenesis was assessed using soft agar assays and xenograft analysis of severe combined immunodeficiency mice. Targets of neurotensin-regulated microRNAs were identified via bioinformatic, real-time polymerase chain reaction, and immunoblot analyses. We analyzed RNA samples from human normal colon and tumor samples. RESULTS Neurotensin stimulated differential expression of 38 microRNAs, including miR-21 and miR-155, which have been associated with tumor growth and contain NF-κB binding sites. Neurotensin expression increased colony formation by HCT-116 cells. Blocking miR-21 and/or miR-155 prevented colony formation (P < .001). In mice, intraperitoneal administration of neurotensin increased the growth rate of HCT-116 xenograft tumors; blocking miR-21 and/or miR-155 slowed this tumor growth. Neurotensin activated Akt in HCT-116 cells; this effect was inhibited by blocking miR-21 and/or miR-155 (P < .001). Neurotensin activated AKT through miR-155-mediated suppression of the phosphatase protein phosphatase 2A catalytic subunit alpha (PPP2CA). Levels of phosphatase and tensin homolog (PTEN) and suppressor of cytokine signaling 1 (SOCS1) mRNA, potential targets of miR-21 and miR-155, respectively, were down-regulated by these miRs. Levels of NTR1, miR-21, and miR-155 increased significantly in human colon tumor samples, compared with normal tissues, whereas PPP2CA, SOCS1, and PTEN mRNAs were reduced significantly. CONCLUSIONS NTR1 activation stimulates expression of miR-21 and miR-155 in colonocytes, via Akt and NF-κB, to down-regulate PTEN and SOCS1 and promote growth of tumors in mice. Levels of NTR1, miR-21, and miR-155 increase in human colon tumor samples and correlate with tumor stage.


Inflammatory Bowel Diseases | 2012

Adipose tissue and inflammatory bowel disease pathogenesis

Christopher Fink; Iordanes Karagiannides; Kyriaki Bakirtzi; Charalabos Pothoulakis

Creeping fat has long been recognized as an indicator of Crohns disease (CD) activity. Although most patients with CD have normal or low body mass index (BMI), the ratio of intraabdominal fat to total abdominal fat is far greater than that of controls. The obesity epidemic has instructed us on the inflammatory nature of hypertrophic adipose tissue and similarities between mesenteric depots in obese and CD patients can be drawn. However, several important physiological differences exist between these two depots as well. While the molecular basis of the crosstalk between mesenteric adipose and the inflamed intestine in CD is largely unknown, novel evidence implicates neuropeptides along with adipocyte‐derived paracrine mediators (adipokines) as potential targets for future investigations and highlight adipose tissue physiology as a potential important determinant in the course of IBD. (Inflamm Bowel Dis 2012)


Gastroenterology | 2011

Cathelicidin Signaling via the Toll-like Receptor Protects Against Colitis in Mice

Hon Wai Koon; David Q. Shih; Jeremy Chen; Kyriaki Bakirtzi; Tressia Hing; Ivy Ka Man Law; Samantha Ho; Ryan Ichikawa; Dezheng Zhao; Hua Xu; Richard L. Gallo; Paul W. Dempsey; Genhong Cheng; Stephan R. Targan; Charalabos Pothoulakis

BACKGROUND & AIMS Cathelicidin (encoded by Camp) is an antimicrobial peptide in the innate immune system. We examined whether macrophages express cathelicidin in colons of mice with experimental colitis and patients with inflammatory bowel disease, and we investigated its signaling mechanisms. METHODS Quantitative, real-time, reverse-transcription polymerase chain reaction (PCR), bacterial 16S PCR, immunofluorescence, and small interfering RNA (siRNA) analyses were performed. Colitis was induced in mice using dextran sulfate sodium (DSS); levels of cathelicidin were measured in human primary monocytes. RESULTS Expression of cathelicidin increased in the inflamed colonic mucosa of mice with DSS-induced colitis compared with controls. Cathelicidin expression localized to mucosal macrophages in inflamed colon tissues of patients and mice. Exposure of human primary monocytes to Escherichia coli DNA induced expression of Camp messenger RNA, which required signaling by extracellular signal-regulated kinase (ERK); expression was reduced by siRNAs against Toll-like receptor (TLR)9 and MyD88. Intracolonic administration of bacterial DNA to wild-type mice induced expression of cathelicidin in colons of control mice and mice with DSS-induced colitis. Colon expression of cathelicidin was significantly reduced in TLR9(-/-) mice with DSS-induced colitis. Compared with wild-type mice, Camp(-/-) mice developed a more severe form of DSS-induced colitis, particularly after intracolonic administration of E coli DNA. Expression of cathelicidin from bone marrow-derived immune cells regulated DSS induction of colitis in transplantation studies in mice. CONCLUSIONS Cathelicidin protects against induction of colitis in mice. Increased expression of cathelicidin in monocytes and experimental models of colitis involves activation of TLR9-ERK signaling by bacterial DNA. This pathway might be involved in the pathogenesis of ulcerative colitis.


Cell Cycle | 2010

Mechanisms of nitric oxide-mediated inhibition of EMT in cancer: Inhibition of the metastasis-inducer Snail and induction of the metastasis-suppressor RKIP

Stavroula Baritaki; Sara Huerta-Yepez; Anna Sahakyan; Iordanis Karagiannides; Kyriaki Bakirtzi; Ali R. Jazirehi; Benjamin Bonavida

The role of nitric oxide (NO) in cancer has been controversial and is based on the levels of NO and the responsiveness of the tumor type. It remains unclear whether NO can inhibit the epithelial to mesenchymal transition (EMT) in cancer cells. EMT induction is mediated, in part, by the constitutive activation of the metastasis-inducer transcription factor, Snail and EMT can be inhibited by the metastasis-suppressor Raf-1 kinase inhibitor protein (RKIP) and E-cadherin. Snail is transcriptionally regulated by NF-κB and in turn, Snail represses RKIP transcription. Hence, we hypothesized that high levels of NO, that inhibit NF-κB activity, may also inhibit Snail and induce RKIP and leading to inhibition of EMT. We show that treatment of human prostate metastatic cell lines with the NO donor, DETANONOate, inhibits EMT and reverses both the mesenchymal phenotype and the cell invasive properties. Further, treatment with DETANONOate inhibits Snail expression and DNA-binding activity in parallel with the upregulation of RKIP and E-cadherin protein levels. The pivotal roles of Snail inhibition and RKIP induction in DETANONOate-mediated inhibition of EMT were corroborated by both Snail silencing by siRNA and by ectopic expression of RKIP. The in vitro findings were validated in vivo in mice bearing PC-3 xenografts and treated with DETANONOate. The present findings show, for the first time, the novel role of high subtoxic concentrations of NO in the inhibition of EMT. Thus, NO donors may exert therapeutic activities in the reversal of EMT and metastasis.


Journal of Biological Chemistry | 2011

Insulin-like growth factor-1 receptor transactivation modulates the inflammatory and proliferative responses of neurotensin in human colonic epithelial cells.

Dezheng Zhao; Kyriaki Bakirtzi; Yanai Zhan; Hon Wai Koon; Charalabos Pothoulakis

Neurotensin (NT) is a gastrointestinal neuropeptide that modulates intestinal inflammation and healing by binding to its high-affinity receptor NTR1. The dual role of NT in inflammation and healing is demonstrated in models of colitis induced by Clostridium difficile toxin A and dextran sulfate sodium, respectively, and involves NF-κB-dependent IL-8 expression and EGF receptor-mediated MAPK activation in human colonocytes. However, the detailed signaling pathways involved in these responses remain to be elucidated. We report here that NT/NTR1 coupling in human colonic epithelial NCM460 cells activates tyrosine phosphorylation of the insulin-like growth factor-1 receptor (IGF-1R) in a time- and dose-dependent manner. NT also rapidly induces Src tyrosine phosphorylation, whereas pretreatment of cells with the Src inhibitor PP2 before NT exposure decreases NT-induced IGF-1R phosphorylation. In addition, inhibition of IGF-1R activation by either its specific antagonist AG1024 or siRNA against IGF-1 significantly reduces NT-induced IL-8 expression and NF-κB-dependent reporter gene expression. Pretreatment with AG1024 also inhibits Akt activation and apoptosis induced by NT. Silencing of Akt expression by siRNA also substantially attenuates NT-induced IL-8 promoter activity and NF-κB-dependent reporter gene expression. This is the first report to indicate that NT transactivates IGF-1R and that this response is linked to Akt phosphorylation and NF-κB activation, contributing to both pro-inflammatory and tissue repair signaling pathways in response to NT in colonic epithelial cells. We propose that IGF-1R activation represents a previously unrecognized key pathway involved in the mechanisms by which NT and NTR1 modulate colonic inflammation and inflammatory bowel disease.


The Journal of Neuroscience | 2009

Cerebellar neurons possess a vesicular compartment structurally and functionally similar to Glut4-storage vesicles from peripheral insulin-sensitive tissues

Kyriaki Bakirtzi; Gabriel M. Belfort; Ignacio Lopez-Coviella; Darshini Kuruppu; Lei Cao; E. Dale Abel; Anna-Liisa Brownell; Konstantin V. Kandror

The insulin-sensitive isoform of the glucose transporting protein, Glut4, is expressed in fat as well as in skeletal and cardiac muscle and is responsible for the effect of insulin on blood glucose clearance. Recent studies have revealed that Glut4 is also expressed in the brain, although the intracellular compartmentalization and regulation of Glut4 in neurons remains unknown. Using sucrose gradient centrifugation, immunoadsorption and immunofluorescence staining, we have shown that Glut4 in the cerebellum is localized in intracellular vesicles that have the sedimentation coefficient, the buoyant density, and the protein composition similar to the insulin-responsive Glut4-storage vesicles from fat and skeletal muscle cells. In cultured cerebellar neurons, insulin stimulates glucose uptake and causes translocation of Glut4 to the cell surface. Using 18FDG (18fluoro-2-deoxyglucose) positron emission tomography, we found that physical exercise acutely increases glucose uptake in the cerebellum in vivo. Prolonged physical exercise increases expression of the Glut4 protein in the cerebellum. Our results suggest that neurons have a novel type of translocation-competent vesicular compartment which is regulated by insulin and physical exercise similar to Glut4-storage vesicles in peripheral insulin target tissues.


Endocrinology | 2011

Substance P (SP)-Neurokinin-1 Receptor (NK-1R) Alters Adipose Tissue Responses to High-Fat Diet and Insulin Action

Iordanes Karagiannides; Dimitris Stavrakis; Kyriaki Bakirtzi; Efi Kokkotou; Tamara Pirtskhalava; Hamed Nayeb-Hashemi; Collin Bowe; James M. Bugni; Miriam Nuño; Bao Lu; Norma P. Gerard; Susan E. Leeman; James L. Kirkland; Charalabos Pothoulakis

Peripheral administration of a specific neurokinin-1 receptor (NK-1R) antagonist to mice leads to reduced weight gain and circulating levels of insulin and leptin after high-fat diet (HFD). Here, we assessed the contribution of substance P (SP) and NK-1R in diet-induced obesity using NK-1R deficient [knockout (KO)] mice and extended our previous findings to show the effects of SP-NK-1R interactions on adipose tissue-associated insulin signaling and glucose metabolic responses. NK-1R KO and wild-type (WT) littermates were fed a HFD for 3 wk, and obesity-associated responses were determined. Compared with WT, NK-1 KO mice show reduced weight gain and circulating levels of leptin and insulin in response to HFD. Adiponectin receptor mRNA levels are higher in mesenteric fat and liver in NK-1 KO animals compared with WT, after HFD. Mesenteric fat from NK-1R KO mice fed with HFD has reduced stress-activated protein kinase/c-Jun N-terminal kinase and protein kinase C activation compared with WT mice. After glucose challenge, NK-1R KO mice remove glucose from the circulation more efficiently than WT and pair-fed controls, suggesting an additional peripheral effect of NK-1R-mediated signaling on glucose metabolism. Glucose uptake experiments in isolated rat adipocytes showed that SP directly inhibits insulin-mediated glucose uptake. Our results further establish a role for SP-NK-1R interactions in adipose tissue responses, specifically as they relate to obesity-associated pathologies such as glucose intolerance and insulin resistance. Our results highlight this pathway as an important therapeutic approach for type 2 diabetes.


Gut | 2015

Neurotensin—regulated miR-133α is involved in proinflammatory signalling in human colonic epithelial cells and in experimental colitis

Ivy Ka Man Law; Kyriaki Bakirtzi; Christos Polytarchou; Angelos Oikonomopoulos; Daniel W. Hommes; Dimitrios Iliopoulos; Charalabos Pothoulakis

Objective Neurotensin (NT) mediates colonic inflammation through its receptor neurotensin receptor 1 (NTR1). NT stimulates miR-133α expression in colonic epithelial cells. We investigated the role of miR-133α in NT-associated colonic inflammation in vitro and in vivo. Design miR-133α and aftiphilin (AFTPH) levels were measured by quantitative PCR. Antisense (as)-miR-133α was administrated intracolonicaly prior to induction of 2, 4, 6-trinitrobenzene sulfonic acid (TNBS)-induced colitis and dextran sodium sulfate (DSS)-induced colitis. The effect of AFTPH was examined by gene silencing in vitro. Results NT increased miR-133α levels in NCM-460 overexpressing NTR1 (NCM460-NTR1) and HCT-116 cells. NT-induced p38, ERK1/2, c-Jun, and NF-κB activation, as well as IL-6, IL-8 and IL-1β messenger RNA (mRNA) expression in NCM-460-NTR1 cells were reduced in miR-133α-silenced cells, while overexpression of miR-133α reversed these effects. MiR-133α levels were increased in TNBS (2 day) and DSS (5 day) colitis, while NTR1 deficient DSS-exposed mice had reduced miR-133α levels, compared to wild-type colitic mice. Intracolonic as-miR-133α attenuated several parameters of colitis as well expression of proinflammatory mediators in the colonic mucosa. In silico search coupled with qPCR identified AFTPH as a downstream target of miR-133α, while NT decreased AFTPH expression in NCM-460-NTR1 colonocytes. Gene silencing of AFTPH enhanced NT-induced proinflammatory responses and AFTPH levels were downregulated in experimental colitis. Levels of miR-133α were significantly upregulated, while AFTPH levels were downregulated in colonic biopsies of patients with ulcerative colitis compared to controls. Conclusions NT-associated colitis and inflammatory signalling are regulated by miR-133α-AFTPH interactions. Targeting of miR-133α or AFTPH may represent a novel therapeutic approach in inflammatory bowel disease.


Journal of Biological Chemistry | 2012

Neurotensin-induced Proinflammatory Signaling in Human Colonocytes Is Regulated by β-Arrestins and Endothelin-converting Enzyme-1-dependent Endocytosis and Resensitization of Neurotensin Receptor 1

Ivy Ka Man Law; Jane E. Murphy; Kyriaki Bakirtzi; Nigel W. Bunnett; Charalabos Pothoulakis

Background: Neurotensin induces proinflammatory responses in human colonic epithelial cells. Results: β-Arrestins and endothelin-converting enzyme 1 regulate neurotensin receptor 1-mediated inflammatory signaling in human colonocytes. Conclusion: Neurotensin-induced proinflammatory responses depend on β-arrestins and are regulated by receptor recycling. Significance: This is a previously unrecognized pathway for regulating neurotensin-induced colonic inflammatory responses. The neuropeptide/hormone neurotensin (NT) mediates intestinal inflammation and cell proliferation by binding of its high affinity receptor, neurotensin receptor-1 (NTR1). NT stimulates IL-8 expression in NCM460 human colonic epithelial cells by both MAP kinase- and NF-κB-dependent pathways. Although the mechanism of NTR1 endocytosis has been studied, the relationship between NTR1 intracellular trafficking and inflammatory signaling remains to be elucidated. In the present study, we show that in NCM460 cells exposed to NT, β-arrestin-1 (βARR1), and β-arrestin-2 (βARR2) translocate to early endosomes together with NTR1. Endothelin-converting enzyme-1 (ECE-1) degrades NT in acidic conditions, and its activity is crucial for NTR1 recycling. Pretreatment of NCM460 cells with the ECE-1 inhibitor SM19712 or gene silencing of βARR1 or βARR2 inhibits NT-stimulated ERK1/2 and JNK phosphorylation, NF-κB p65 nuclear translocation and phosphorylation, and IL-8 secretion. Furthermore, NT-induced cell proliferation, but not IL-8 transcription, is attenuated by the JNK inhibitor, JNK(AII). Thus, NTR1 internalization and recycling in human colonic epithelial cells involves βARRs and ECE-1, respectively. Our results also indicate that βARRs and ECE-1-dependent recycling regulate MAP kinase and NF-κB signaling as well as cell proliferation in human colonocytes in response to NT.

Collaboration


Dive into the Kyriaki Bakirtzi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivy Ka Man Law

University of California

View shared research outputs
Top Co-Authors

Avatar

Hon Wai Koon

University of California

View shared research outputs
Top Co-Authors

Avatar

Aristea Sideri

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Q. Shih

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Samantha Ho

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge