Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kyuhwa Seo is active.

Publication


Featured researches published by Kyuhwa Seo.


Toxicological research | 2014

Methylglyoxal Induces Mitochondrial Dysfunction and Cell Death in Liver

Kyuhwa Seo; Sung Hwan Ki; Sang Mi Shin

Degradation of glucose is aberrantly increased in hyperglycemia, which causes various harmful effects on the liver. Methylglyoxal is produced during glucose degradation and the levels of methylglyoxal are increased in diabetes patients. In this study we investigated whether methylglyoxal induces mitochondrial impairment and apoptosis in HepG2 cells and induces liver toxicity in vivo. Methylglyoxal caused apoptotic cell death in HepG2 cells. Moreover, methylglyoxal significantly promoted the production of reactive oxygen species (ROS) and depleted glutathione (GSH) content. Pretreatment with antioxidants caused a marked decrease in methylglyoxal-induced apoptosis, indicating that oxidant species are involved in the apoptotic process. Methylglyoxal treatment induced mitochondrial permeability transition, which represents mitochondrial impairment. However, pretreatment with cyclosporin A, an inhibitor of the formation of the permeability transition pore, partially inhibited methylglyoxal-induced cell death. Furthermore, acute treatment of mice with methylglyoxal increased the plasma levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), indicating liver toxicity. Collectively, our results showed that methylglyoxal increases cell death and induces liver toxicity, which results from ROS-mediated mitochondrial dysfunction and oxidative stress.


Toxicology and Applied Pharmacology | 2013

Resveratrol inhibits LXRα-dependent hepatic lipogenesis through novel antioxidant Sestrin2 gene induction.

So Hee Jin; Ji Hye Yang; Bo Yeon Shin; Kyuhwa Seo; Sang Mi Shin; Il Je Cho; Sung Hwan Ki

Liver X receptor-α (LXRα), a member of the nuclear receptor superfamily of ligand-activated transcription factors, regulates de novo fatty acid synthesis that leads to stimulate hepatic steatosis. Although, resveratrol has beneficial effects on metabolic disease, it is not known whether resveratrol affects LXRα-dependent lipogenic gene expression. This study investigated the effect of resveratrol in LXRα-mediated lipogenesis and the underlying molecular mechanism. Resveratrol inhibited the ability of LXRα to activate sterol regulatory element binding protein-1c (SREBP-1c) and thereby inhibited target gene expression in hepatocytes. Moreover, resveratrol decreased LXRα-RXRα DNA binding activity and LXRE-luciferase transactivation. Resveratrol is known to activate Sirtuin 1 (Sirt1) and AMP-activated protein kinase (AMPK), although its precise mechanism of action remains controversial. We found that the ability of resveratrol to repress T0901317-induced SREBP-1c expression was not dependent on AMPK and Sirt1. It is well established that hepatic steatosis is associated with antioxidant and redox signaling. Our data showing that expression of Sestrin2 (Sesn2), which is a novel antioxidant gene, was significantly down-regulated in the livers of high-fat diet-fed mice. Moreover, resveratrol up-regulated Sesn2 expression, but not Sesn1 and Sesn3. Sesn2 overexpression repressed LXRα-activated SREBP-1c expression and LXRE-luciferase activity. Finally, Sesn2 knockdown using siRNA abolished the effect of resveratrol in LXRα-induced FAS luciferase gene transactivation. We conclude that resveratrol affects Sesn2 gene induction and contributes to the inhibition of LXRα-mediated hepatic lipogenesis.


Inflammation | 2014

The antioxidant effects of isorhamnetin contribute to inhibit COX-2 expression in response to inflammation: a potential role of HO-1.

Kyuhwa Seo; Ji Hye Yang; Sang Chan Kim; Sae Kwang Ku; Sung Hwan Ki; Sang Mi Shin

Previously, we reported that isorhamnentin, a 3′-O-methylated metabolite of quercetin, reduced inducible nitric oxide synthase (iNOS) expression and NO production. The present study further investigated the underlying mechanism of anti-inflammatory and antioxidant effects of isorhamnentin. Administration of isorhamnetin decreased the number of cyclooxygenase-2 (COX-2) positive cells in rats with carrageenan-induced paw edema. Isorhamnetin also suppressed lipopolysaccharide (LPS)-induced expression of COX-2 in cells. It is well known that LPS-induced reactive oxygen species (ROS) production leads to COX-2 induction. Isorhamnetin decreased LPS-induced ROS production and apoptosis. In addition, the basal expression of heme oxygenase-1 (HO-1) was increased by isorhamnetin treatment in agreement with the increase in nuclear translocation of NF-E2-related factor-2 (Nrf2), an essential transcription factor for the regulation of HO-1 expression. Moreover, pretreatment of tin protoporphyrin IX (SnPP), a chemical inhibitor of HO-1, reversed the ability of isothamnetin to inhibit COX-2 expression. These results demonstrate that induction of HO-1 by isorhamnetin leads to a reduction in ROS production and its antioxidant property might contribute to the inhibition of COX-2 expression in response to inflammation.


Journal of Pharmaceutical Investigation | 2012

Recent advances in PLGA particulate systems for drug delivery

Jin-Seok Choi; Kyuhwa Seo; Jin-Wook Yoo

PLGA is a FDA-approved biocompatible and biodegradable polymer that is widely used in biomedical fields including drug delivery. Micro and nanoparticles based on PLGA have been extensively studied as drug delivery systems. Numerous studies proved that PLGA particulate systems are highly promising drug carriers for tumor targeting as well as pulmonary, oral, ophthalmic and vaginal delivery. PLGA particles can load a variety of classes of drugs including peptides, proteins and siRNA, protect unstable drugs in the body and have an ability to adapt versatile surface functionalities. PLGA particle systems have evolved with advancement of nano and biotechnology in the past decade. This review focuses on novel and innovative PLGA-based particulate drug delivery carriers in recent years.


Cellular Signalling | 2015

Sestrin2–AMPK activation protects mitochondrial function against glucose deprivation-induced cytotoxicity

Kyuhwa Seo; Sung Hwan Ki; Sang Mi Shin

Sestrin2 (SESN2) regulates redox-homeostasis and apoptosis in response to various stresses. Although the antioxidant effects of SESN2 have been well established, the roles of SESN2 in mitochondrial function and metabolic stress have not yet been elucidated. In this study, we investigated the role of SESN2 in mitochondrial dysfunction under glucose deprivation and related signaling mechanisms. Glucose deprivation significantly upregulated SESN2 expression in hepatocyte-derived cells. Antioxidant treatments repressed SESN2 induction under glucose deprivation, this result suggested that reactive oxygen species (ROS) production was involved in SESN2 induction. Moreover, NF-E2-related factor-2 (Nrf2) phosphorylation was accompanied in induction of SESN2 by glucose deprivation. To elucidate the functional role of SESN2, we examined cells that stably overexpressed SESN2. Overexpression of SESN2 inhibited glucose deprivation-induced ROS production and cell death. In addition, under glucose deprivation, the changes in mitochondrial membrane potential, ADP/ATP ratio, and mitochondrial DNA content were significantly restored in SESN2-overexpressing cells. Moreover, siRNA knockdown of SESN2 failed to prevent mitochondrial permeability transition by glucose depletion. Mechanistic investigation showed that glucose deprivation significantly increased AMP-activated protein kinase (AMPK) activation. The recovery of mitochondrial function under glucose deprivation in SESN2-overexpressing cells was not seen in SESN2-overexpressing cells transfected with a dominant-negative AMPK; this result suggested that AMPK activation was responsible for SESN2-mediated mitochondrial protection against glucose deprivation. Treatment with 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR, an AMPK activator) also provided cytoprotective effects against glucose deprivation. Our findings provide evidence for the functional importance of SESN2-AMPK activation in the protection of mitochondria and cells against glucose deprivation-induced metabolic stress.


Toxicology and Applied Pharmacology | 2014

Resveratrol attenuates methylglyoxal-induced mitochondrial dysfunction and apoptosis by Sestrin2 induction

Kyuhwa Seo; Suho Seo; Jae Yun Han; Sung Hwan Ki; Sang Mi Shin

Methylglyoxal is found in high levels in the blood and other tissues of diabetic patients and exerts deleterious effects on cells and tissues. Previously, we reported that resveratrol, a polyphenol in grapes, induced the expression of Sestrin2 (SESN2), a novel antioxidant protein, and inhibited hepatic lipogenesis. This study investigated whether resveratrol protects cells from the methylglyoxal-induced toxicity via SESN2 induction. Methylglyoxal significantly induced cell death in HepG2 cells. However, cells pretreated with resveratrol were rescued from methylglyoxal-induced apoptosis. Resveratrol attenuated glutathione (GSH) depletion and ROS production promoted by methylglyoxal. Moreover, mitochondrial damage was observed by methylglyoxal treatment, but resveratrol restored mitochondrial function, as evidenced by the observed lack of mitochondrial permeability transition and increased ADP/ATP ratio. Resveratrol treatment inhibited SESN2 depletion elicited by methylglyoxal. SESN2 overexpression repressed methylglyoxal-induced mitochondrial dysfunction and apoptosis. Likewise, rotenone-induced cytotoxicity was not observed in SESN2 overexpressed cells. Furthermore, siRNA knockdown of SESN2 reduced the ability of resveratrol to prevent methylglyoxal-induced mitochondrial permeability transition. In addition, when mice were exposed to methylglyoxal after infection of Ad-SESN2, the plasma levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and GSH depletion by methylglyoxal in liver was reduced in Ad-SESN2 infected mice. Our results demonstrated that resveratrol is capable of protecting cells from methylglyoxal-induced mitochondrial dysfunction and oxidative stress via SESN2 induction.


Biological & Pharmaceutical Bulletin | 2016

Compound C Increases Sestrin2 Expression via Mitochondria-Dependent ROS Production

Kyuhwa Seo; Suho Seo; Sung Hwan Ki; Sang Mi Shin

Compound C is a widely used chemical inhibitor that down-regulates AMP-activated protein kinase (AMPK) activity. However, it has been suggested that compound C exerts AMPK-independent effects in various cells. Here, we investigated whether compound C induces Sestrin2 (SESN2), an antioxidant enzyme induced by diverse stress. In addition, the mechanism responsible for SESN2 induction by compound C was determined. Our results showed that compound C increased SESN2 protein expression in HepG2 cells in a concentration- and time-dependent manner. The induction of SESN2 mRNA was also observed in cells treated with compound C. Increase of SESN2 luciferase activity confirmed transcriptional regulation by compound C and this substance also increased nuclear factor erythroid 2 (NF-E2)-related factor-2 (Nrf2) phosphorylation, which implies that Nrf2 was involved in SESN2 induction. Next, we sought to demonstrate whether production of reactive oxygen species (ROS) accompanied SESN2 expression. Compound C increased ROS production, but this effect was prevented by pretreatment with antioxidants or the mitochondrial complex I inhibitor. Moreover, cyclosporin A, an inhibitor of pore formation in the mitochondrial membrane, attenuated compound C-induced SESN2 induction. However, overexpression of a constitutively active form of AMPK was not able to abolish SESN2 induction by compound C, which implies that its action is independent of AMPK inhibition. In conclusion, this is the first study demonstrating that compound C alters mitochondrial function and induces ROS production, which ultimately leads to phosphorylation of Nrf2 and induction of SESN2.


Toxicological research | 2017

Induction of Lipin1 by ROS-Dependent SREBP-2 Activation

Kyuhwa Seo; Sang Mi Shin

Lipin1 was identified as a phosphatidate phosphatase enzyme, and it plays a key role in lipid metabolism. Since free radicals contribute to metabolic diseases in the liver, this study investigated the effects of free radicals on the regulation of Lipin1 expression in Huh7 and AML12 cells. Hydrogen peroxide induced mRNA and protein expression of Lipin1 in Huh7 cells, which was assayed by quantitative RT-PCR and immunoblotting, respectively. Induction of Lipin1 by hydrogen peroxide was confirmed in AML12 cells. Hydrogen peroxide treatment significantly increased expression of sterol regulatory element-binding protein (SREBP)-2, but not SREBP-1. Moreover, nuclear translocation of SREBP-2 was detected after hydrogen peroxide treatment. Hydrogen peroxide-induced Lipin1 or SREBP-2 expression was significantly reduced by N-acetyl-l-cysteine treatment, indicating that reactive oxygen species (ROS) were implicated in Lipin1 expression. Next, we investigated whether the hypoxic environments that cause endogenous ROS production in mitochondria in metabolic diseases affect the expression of Lipin1. Exposure to hypoxia also increased Lipin1 expression. In contrast, pretreatment with antioxidants attenuated hypoxia-induced Lipin1 expression. Collectively, our results show that ROS activate SREBP-2, which induces Lipin1 expression.


Biotechnology and Bioprocess Engineering | 2017

Potential role of mitochondrial ROS in Sestrin2 degradation

Kyuhwa Seo; Suho Seo; Sung Hwan Ki; Sang Mi Shin

Sestrin2 (SESN2) is a stress-inducible antioxidant protein that controls redox-homeostasis via its oxidoreductase activity. Although the induction mechanism of SESN2 has been reported, the mechanism for regulation of SESN2 protein stability has not yet been elucidated. In the present study, we investigated the role of mitochondrial reactive oxygen species (ROS) in the degradation of SESN2 and the related mechanism. First, we found that rotenone, an inhibitor of mitochondrial complex I, significantly lowered the SESN2 protein level in hepatocytes. In addition, antimycin A (an inhibitor of mitochondrial complex III) and Mn-TBAP (a superoxide dismutase mimetic) were also shown to reduce SESN2. Rotenone decreased mitochondrial ROS; this result implied that mitochondrial ROS production was involved in SESN2 regulation. However, the level of SESN2 mRNA was unchanged by rotenone treatment. Next, SESN2 protein stability was observed after treatment with cycloheximide and rotenone. Decreased SESN2 protein stability was detected in the presence of cycloheximide, and rotenone accelerated this SESN2 decay. MG132 (a proteasome inhibitor) treatment causes significant accumulation of SESN2 protein, but rotenone still reduced SESN2 levels in the presence of MG132. However, chloroquine, a lysosomal inhibitor, restored rotenone-reduced SESN2 levels. These results suggest that mitochondrial ROS prevent SESN2 protein degradation, and this is dependent on lysosomal activity.


Free Radical Biology and Medicine | 2016

Sestrin2 inhibits hypoxia-inducible factor-1α accumulation via AMPK-mediated prolyl hydroxylase regulation.

Kyuhwa Seo; Suho Seo; Sung Hwan Ki; Sang Mi Shin

Sestrin2 (SESN2) is an antioxidant protein that modulates cellular redox homeostasis through regeneration of peroxiredoxins. It has beneficial effects in oxidative or metabolic stress conditions as an upstream regulator of AMP-activated protein kinase (AMPK). Since hypoxia causes oxidative and metabolic stress, this study investigated the effect of SESN2 on signaling pathways altered by hypoxia in colon cancer cells. SESN2 overexpression in HEK293 cells inhibited hypoxia-inducible factor-1α (HIF-1α), which plays a crucial role in tumor growth and development in hypoxia. Moreover, infection with adenovirus-SESN2 (Ad-SESN2) decreased hypoxia or CoCl2-induced HIF-1α accumulation in colorectal cancer cells. Ad-SESN2 also reduced CoCl2-induced hypoxia response element (HRE)-luciferase activity and mRNA level of HIF-1α-driven genes. Furthermore, Ad-SESN2 infected cells showed anti-metastatic effects in serum-induced cell migration and invasion in vitro. Ad-SESN2 facilitated the ubiquitination of HIF-1α protein and increased hydroxyl-HIF-1α (OH-HIF-1α) level. In contrast, treatment with dimethyloxalylglycine (DMOG), an inhibitor of prolyl hydroxylase (PHD), reversed Ad-SESN2-induced OH-HIF-1α and subsequently suppressed HIF-1α level. The inhibitory effects of SESN2 on the serum-induced in vitro cell migration and invasion were also abrogated by DMOG treatment. Furthermore, knockdown of AMPKα reversed Ad-SESN2-mediated increase of OH-HIF-1α and inhibition of HIF-1α. Dominant-negative form of AMPK also restored the Ad-SESN2 mediated decrease in HIF-1α accumulation. Lastly, Ad-SESN2 suppressed tumor growth in a mouse xenograft model. Taken together, these results suggest that SESN2 increases degradation of HIF-1α via AMPK-PHD regulation that contributes to inhibition of in vitro and in vivo tumorigenesis.

Collaboration


Dive into the Kyuhwa Seo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eun Young Park

Mokpo National University

View shared research outputs
Top Co-Authors

Avatar

Il Je Cho

Daegu Haany University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge