Kyung An Han
Pennsylvania State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kyung An Han.
The Journal of Neuroscience | 2007
Young Cho Kim; Hyun Gwan Lee; Kyung An Han
Drosophila has robust behavioral plasticity to avoid or prefer the odor that predicts punishment or food reward, respectively. Both types of plasticity are mediated by the mushroom body (MB) neurons in the brain, in which various signaling molecules play crucial roles. However, important yet unresolved molecules are the receptors that initiate aversive or appetitive learning cascades in the MB. We have shown previously that D1 dopamine receptor dDA1 is highly enriched in the MB neuropil. Here, we demonstrate that dDA1 is a key receptor that mediates both aversive and appetitive learning in pavlovian olfactory conditioning. We identified two mutants, dumb1 and dumb2, with abnormal dDA1 expression. When trained with the same conditioned stimuli, both dumb alleles showed negligible learning in electric shock-mediated conditioning while they exhibited moderately impaired learning in sugar-mediated conditioning. These phenotypes were not attributable to anomalous sensory modalities of dumb mutants because their olfactory acuity, shock reactivity, and sugar preference were comparable to those of control lines. Remarkably, the dumb mutants impaired performance in both paradigms was fully rescued by reinstating dDA1 expression in the same subset of MB neurons, indicating the critical roles of the MB dDA1 in aversive as well as appetitive learning. Previous studies using dopamine receptor antagonists implicate the involvement of D1/D5 receptors in various pavlovian conditioning tasks in mammals; however, these have not been supported by the studies of D1- or D5-deficient animals. The findings described here unambiguously clarify the critical roles of D1 dopamine receptor in aversive and appetitive pavlovian conditioning.
Neuron | 1996
Kyung An Han; Neil S. Millar; Michael S. Grotewiel; Ronald L. Davis
The modulatory neurotransmitters that trigger biochemical cascades underlying olfactory learning in Drosophila mushroom bodies have remained unknown. To identify molecules that may perform this role, putative biogenic amine receptors were cloned using the polymerase chain reaction (PCR) and single-strand conformation polymorphism analysis. One new receptor, DAMB, was identified as a dopamine D1 receptor by sequence analysis and pharmacological characterization. In situ hybridization and immunohistochemical analyses revealed highly enriched expression of DAMB in mushroom bodies, in a pattern coincident with the rutabaga-encoded adenylyl cyclase. The spatial coexpression of DAMB and the cyclase, along with DAMBs capacity to mediate dopamine-induced increases in cAMP make this receptor an attractive candidate for initiating biochemical cascades underlying learning.
Neuron | 2009
Tim Lebestky; Jung Sook C Chang; Heiko Dankert; Lihi Zelnik; Young Cho Kim; Kyung An Han; Fred W. Wolf; Pietro Perona; David J. Anderson
Arousal is fundamental to many behaviors, but whether it is unitary or whether there are different types of behavior-specific arousal has not been clear. In Drosophila, dopamine promotes sleep-wake arousal. However, there is conflicting evidence regarding its influence on environmentally stimulated arousal. Here we show that loss-of-function mutations in the D1 dopamine receptor DopR enhance repetitive startle-induced arousal while decreasing sleep-wake arousal (i.e., increasing sleep). These two types of arousal are also inversely influenced by cocaine, whose effects in each case are opposite to, and abrogated by, the DopR mutation. Selective restoration of DopR function in the central complex rescues the enhanced stimulated arousal but not the increased sleep phenotype of DopR mutants. These data provide evidence for at least two different forms of arousal, which are independently regulated by dopamine in opposite directions, via distinct neural circuits.
PLOS ONE | 2009
Mareike Selcho; Dennis Pauls; Kyung An Han; Reinhard F. Stocker; Andreas S. Thum
Learning and memory is not an attribute of higher animals. Even Drosophila larvae are able to form and recall an association of a given odor with an aversive or appetitive gustatory reinforcer. As the Drosophila larva has turned into a particularly simple model for studying odor processing, a detailed neuronal and functional map of the olfactory pathway is available up to the third order neurons in the mushroom bodies. At this point, a convergence of olfactory processing and gustatory reinforcement is suggested to underlie associative memory formation. The dopaminergic system was shown to be involved in mammalian and insect olfactory conditioning. To analyze the anatomy and function of the larval dopaminergic system, we first characterize dopaminergic neurons immunohistochemically up to the single cell level and subsequent test for the effects of distortions in the dopamine system upon aversive (odor-salt) as well as appetitive (odor-sugar) associative learning. Single cell analysis suggests that dopaminergic neurons do not directly connect gustatory input in the larval suboesophageal ganglion to olfactory information in the mushroom bodies. However, a number of dopaminergic neurons innervate different regions of the brain, including protocerebra, mushroom bodies and suboesophageal ganglion. We found that dopamine receptors are highly enriched in the mushroom bodies and that aversive and appetitive olfactory learning is strongly impaired in dopamine receptor mutants. Genetically interfering with dopaminergic signaling supports this finding, although our data do not exclude on naïve odor and sugar preferences of the larvae. Our data suggest that dopaminergic neurons provide input to different brain regions including protocerebra, suboesophageal ganglion and mushroom bodies by more than one route. We therefore propose that different types of dopaminergic neurons might be involved in different types of signaling necessary for aversive and appetitive olfactory memory formation respectively, or for the retrieval of these memory traces. Future studies of the dopaminergic system need to take into account such cellular dissociations in function in order to be meaningful.
Gene Expression Patterns | 2003
Young Cho Kim; Hyun Gwan Lee; Chang Soo Seong; Kyung An Han
The diverse physiological effects of dopamine are mediated by multiple receptor systems. The dDA1 represents one of the Drosophila dopamine receptors that activate the cAMP cascade. To gain insight into the role of dDA1, we generated a polyclonal antibody against the unique sequence in dDA1 and investigated dDA1 distribution in the central nervous system (CNS) of Drosophila melanogaster. In both larval and adult CNS pronounced dDA1 immunoreactivity was present in the neuropil of the mushroom bodies, a brain structure crucial for learning and memory in insects, and four unpaired neurons in each thoracic segment. In addition, the larval abdominal ganglion contained two dDA1 cells in each segment. This expression pattern appeared to be maintained in the condensed adult abdominal ganglion although the precise number and the intensity of staining were somewhat variable. The adult CNS also exhibited intense dDA1 immunoreactivity in the central complex, a structure controlling higher-order motor function, moderate expression in several neurosecretory cells, and weak staining in two unpaired neurons in the mesothoracic neuromere. The dDA1 expression in these areas was only detected in adult, but not in third instar larval CNS.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Rozi Andretic; Young Cho Kim; Frederick S. Jones; Kyung An Han; Ralph J. Greenspan
The arousing and motor-activating effects of psychostimulants are mediated by multiple systems. In Drosophila, dopaminergic transmission is involved in mediating the arousing effects of methamphetamine, although the neuronal mechanisms of caffeine (CAFF)-induced wakefulness remain unexplored. Here, we show that in Drosophila, as in mammals, the wake-promoting effect of CAFF involves both the adenosinergic and dopaminergic systems. By measuring behavioral responses in mutant and transgenic flies exposed to different drug-feeding regimens, we show that CAFF-induced wakefulness requires the Drosophila D1 dopamine receptor (dDA1) in the mushroom bodies. In WT flies, CAFF exposure leads to downregulation of dDA1 expression, whereas the transgenic overexpression of dDA1 leads to CAFF resistance. The wake-promoting effects of methamphetamine require a functional dopamine transporter as well as the dDA1, and they engage brain areas in addition to the mushroom bodies.
PLOS ONE | 2009
Hyun Gwan Lee; Suman Rohila; Kyung An Han
Ovulation is an essential physiological process in sexual reproduction; however, the underlying cellular mechanisms are poorly understood. We have previously shown that OAMB, a Drosophila G-protein-coupled receptor for octopamine (the insect counterpart of mammalian norepinephrine), is required for ovulation induced upon mating. OAMB is expressed in the nervous and reproductive systems and has two isoforms (OAMB-AS and OAMB-K3) with distinct capacities to increase intracellular Ca2+ or intracellular Ca2+ and cAMP in vitro. Here, we investigated tissue specificity and intracellular signals required for OAMBs function in ovulation. Restricted OAMB expression in the adult oviduct epithelium, but not the nervous system, reinstated ovulation in oamb mutant females, in which either OAMB isoform was sufficient for the rescue. Consistently, strong immunoreactivities for both isoforms were observed in the wild-type oviduct epithelium. To delineate the cellular mechanism by which OAMB regulates ovulation, we explored protein kinases functionally interacting with OAMB by employing a new GAL4 driver with restricted expression in the oviduct epithelium. Conditional inhibition of Ca2+/Calmodulin-dependent protein kinase II (CaMKII), but not protein kinase A or C, in the oviduct epithelium inhibited ovulation. Moreover, constitutively active CaMKII, but not protein kinase A, expressed only in the adult oviduct epithelium fully rescued the oamb females phenotype, demonstrating CaMKII as a major downstream molecule conveying the OAMBs ovulation signal. This is consistent with the ability of both OAMB isoforms, whose common intracellular signal in vitro is Ca2+, to reinstate ovulation in oamb females. These observations reveal the critical roles of the oviduct epithelium and its cellular components OAMB and CaMKII in ovulation. It is conceivable that the OAMB-mediated cellular activities stimulated upon mating are crucial for secretory activities suitable for egg transfer from the ovary to the uterus.
PLOS ONE | 2008
Hyun Gwan Lee; Young Cho Kim; Jennifer S. Dunning; Kyung An Han
Alcohol has a strong causal relationship with sexual arousal and disinhibited sexual behavior in humans; however, the physiological support for this notion is largely lacking and thus a suitable animal model to address this issue is instrumental. We investigated the effect of ethanol on sexual behavior in Drosophila. Wild-type males typically court females but not males; however, upon daily administration of ethanol, they exhibited active intermale courtship, which represents a novel type of behavioral disinhibition. The ethanol-treated males also developed behavioral sensitization, a form of plasticity associated with addiction, since their intermale courtship activity was progressively increased with additional ethanol experience. We identified three components crucial for the ethanol-induced courtship disinhibition: the transcription factor regulating male sex behavior Fruitless, the ABC guanine/tryptophan transporter White and the neuromodulator dopamine. fruitless mutant males normally display conspicuous intermale courtship; however, their courtship activity was not enhanced under ethanol. Likewise, white males showed negligible ethanol-induced intermale courtship, which was not only reinstated but also augmented by transgenic White expression. Moreover, inhibition of dopamine neurotransmission during ethanol exposure dramatically decreased ethanol-induced intermale courtship. Chronic ethanol exposure also affected a males sexual behavior toward females: it enhanced sexual arousal but reduced sexual performance. These findings provide novel insights into the physiological effects of ethanol on sexual behavior and behavioral plasticity.
Analytical Chemistry | 2009
Monique A. Makos; Young Cho Kim; Kyung An Han; Michael L. Heien; Andrew G. Ewing
Carbon-fiber microelectrodes coupled with electrochemical detection have been used extensively for the analysis of biogenic amines. In order to determine the functional role of these amines, in vivo studies have primarily used rats and mice as model organisms. Here, we report on the development of these microanalytical techniques for in vivo electrochemical detection of dopamine in the adult Drosophila melanogaster central nervous system (CNS). A triple-barrel micropipet injector was used to exogenously apply three different concentrations of dopamine, and a cylindrical carbon-fiber microelectrode was placed in the protocerebral anterior medial brain area where dopamine neurons are densely populated. Background-subtracted fast-scan cyclic voltammetry was used to measure dopamine concentration in the fly CNS. Distinct differences are shown for the clearance of exogenously applied dopamine in the brains of wild type flies versus fumin (fmn) mutants lacking a functional dopamine transporter. The current response due to oxidation of dopamine increased significantly from baseline for wild type flies following cocaine incubation. Interestingly, the current remained unchanged for mutant flies under the same conditions. These data confirm the accepted theory that cocaine blocks dopamine transporter function and validates the use of in vivo electrochemical methods to monitor dopamine uptake in Drosophila. Furthermore, after incubation with tetrodotoxin (TTX), a sodium channel blocker, there was a significant increase in peak oxidation current in the wild type flies; however, the current did not significantly change in the fmn mutant. These data suggest that factors that affect neuronal activity via ion channels such as TTX also influence the function of the dopamine transporter in Drosophila.
The Journal of Neuroscience | 2009
Xu Liu; Monica E. Buchanan; Kyung An Han; Ronald L. Davis
Assigning a genes function to specific pathways used for classical conditioning, such as conditioned stimulus (CS) and unconditioned stimulus (US) pathway, is important for understanding the fundamental molecular and cellular mechanisms underlying memory formation. Prior studies have shown that the GABA receptor RDL inhibits aversive olfactory learning via its role in the Drosophila mushroom bodies (MBs). Here, we describe the results of further behavioral tests to further define the pathway involvement of RDL. The expression level of Rdl in the MBs influenced both appetitive and aversive olfactory learning, suggesting that it functions by suppressing a common pathway used for both forms of olfactory learning. Rdl knock down failed to enhance learning in animals carrying mutations in genes of the cAMP signaling pathway, such as rutabaga and NF1, suggesting that RDL works up stream of these functions in CS/US integration. Finally, knocking down Rdl or over expressing the dopamine receptor dDA1 in the MBs enhanced olfactory learning, but no significant additional enhancement was detected with both manipulations. The combined data suggest that RDL suppresses olfactory learning via CS pathway involvement.