Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kyung-Jong Won is active.

Publication


Featured researches published by Kyung-Jong Won.


Circulation Research | 2009

Gene Transfer of Redox Factor-1 Inhibits Neointimal Formation: Involvement of Platelet-Derived Growth Factor-β Receptor Signaling via the Inhibition of the Reactive Oxygen Species–Mediated Syk Pathway

Hwan Myung Lee; Byeong Hwa Jeon; Kyung-Jong Won; Chang-Kwon Lee; Tae-Kyu Park; Wahn Soo Choi; Young Min Bae; Hyo Shin Kim; Sang Ki Lee; Seung Hwa Park; Kaikobad Irani; Bokyung Kim

The role of apurinic/apyrimidinic endonuclease-1/redox factor-1 (Ref-1) in vascular smooth muscle cells has yet to be clearly elucidated. Therefore, we attempted to determine the roles of Ref-1 in the migration induced by platelet-derived growth factor (PDGF)-BB and in its signaling in rat aortic smooth muscle cells (RASMCs). Cellular migration, superoxide (O2−·) production, Rac-1 activity, and neointima formation were determined in cells transfected with adenoviruses encoding for Ref-1 (AdRef-1) and small interference RNA of Ref-1. Overexpression of Ref-1 induced by treatment with RASMCs coupled with AdRef-1 inhibited the migration induced by PDGF-BB. PDGF-BB also increased the phosphorylation of the PDGF&bgr; receptor, spleen tyrosine kinase (Syk), mitogen-activated protein kinase, and heat shock protein 27, but these increases were significantly inhibited by AdRef-1 treatment. PDGF-BB increased O2−· production and Rac-1 activity, and these were diminished in cells transfected with AdRef-1. In contrast, RASMC migration, phosphorylation of Syk and O2−· production in response to PDGF-BB were increased by the knock down of Ref-1 with small interference RNA. The phosphorylation of PDGF&bgr; receptor in response to PDGF-BB was inhibited completely by the Syk inhibitor and was partly attenuated by a NADPH oxidase inhibitor. PDGF-BB increased the sprout outgrowth of the aortic ring ex vivo, which was inhibited in the AdRef-1–infected RASMCs as compared with the controls. Balloon injury–induced neointimal formation was significantly attenuated by the gene transfer of AdRef-1. These results indicate that Ref-1 inhibits the PDGF-mediated migration signal via the inhibition of reactive oxygen species–mediated Syk activity in RASMCs.


Proteomics | 2009

Diminished expression of dihydropteridine reductase is a potent biomarker for hypertensive vessels

Chang-Kwon Lee; Jin Soo Han; Kyung-Jong Won; Seung-Hyo Jung; Hyo-Jun Park; Hwan Myung Lee; Junghwan Kim; Young Shik Park; Hyun Jung Kim; Pyo-Jam Park; Tae-Kyu Park; Bokyung Kim

To identify the new targets for hypertension, we analyzed the protein expression profiles of aortic smooth muscle in spontaneously hypertensive rats (SHR) of various ages during the development of hypertension, as well as in age‐matched normotensive Wistar–Kyoto (WKY) rats, using a proteomic analysis. The expressions of seven proteins were altered in SHR compared with WKY rats. Of these proteins, NADH dehydrogenase 1α, GSTω1, peroxi‐redoxin I and transgelin were upregulated in SHR compared with WKY rats. On the other hand, the expression of HSP27 and Ran protein decreased in SHR. The diminution of dihydrobiopterin reductase, an enzyme located in the regeneration pathways of tetrahydrobiopterin (BH4), was also prominent in SHR. The results from a PCR analysis revealed that the expression of BH4 biosynthesis enzymes – GTP cyclohydrolase‐1 and sepiapterin reductase – decreased and increased, respectively, in SHR compared with WKY rats. The level of BH4 was less in aortic strips from SHR than from WKY rats. Moreover, treatment with BH4 inhibited aortic smooth muscle contraction induced by serotonin. These results suggest that the deficiency in BH4 regeneration produced by diminished dihydrobiopterin reductase expression is involved in vascular disorders in hypertensive rats.


The Korean Journal of Physiology and Pharmacology | 2009

p38 MAPK Participates in Muscle-Specific RING Finger 1-Mediated Atrophy in Cast-Immobilized Rat Gastrocnemius Muscle

Junghwan Kim; Kyung-Jong Won; Hwan Myung Lee; Byong-Yong Hwang; Young-Min Bae; Whan Soo Choi; Hyuk Song; Ki Won Lim; Chang-Kwon Lee; Bokyung Kim

Skeletal muscle atrophy is a common phenomenon during the prolonged muscle disuse caused by cast immobilization, extended aging states, bed rest, space flight, or other factors. However, the cellular mechanisms of the atrophic process are poorly understood. In this study, we investigated the involvement of mitogen-activated protein kinase (MAPK) in the expression of muscle-specific RING finger 1 (MuRF1) during atrophy of the rat gastrocnemius muscle. Histological analysis revealed that cast immobilization induced the atrophy of the gastrocnemius muscle, with diminution of muscle weight and cross-sectional area after 14 days. Cast immobilization significantly elevated the expression of MuRF1 and the phosphorylation of p38 MAPK. The starvation of L6 rat skeletal myoblasts under serum-free conditions induced the phosphorylation of p38 MAPK and the characteristics typical of cast-immobilized gastrocnemius muscle. The expression of MuRF1 was also elevated in serum-starved L6 myoblasts, but was significantly attenuated by SB203580, an inhibitor of p38 MAPK. Changes in the sizes of L6 myoblasts in response to starvation were also reversed by their transfection with MuRF1 small interfering RNA or treatment with SB203580. From these results, we suggest that the expression of MuRF1 in cast-immobilized atrophy is regulated by p38 MAPK in rat gastrocnemius muscles.


Proteomics | 2011

3-Morpholinosydnonimine participates in the attenuation of neointima formation via inhibition of annexin A2-mediated vascular smooth muscle cell migration

Kyung-Jong Won; Philyoung Lee; Seung Hyo Jung; Xiaowen Jiang; Chang-Kwon Lee; Hai Yue Lin; Hyun Kang; Hwan Myung Lee; Junghwan Kim; Shinya Toyokuni; Bokyung Kim

3‐Morpholinosydnonimine (SIN‐1) affects vascular smooth muscle cell migration and proliferation, processes essential for atherosclerosis. However, the mechanism by which SIN‐1 exerts these effects has not been elucidated. We used 2‐DE followed by MALDI‐TOF/TOF MS to identify responses in protein expression to SIN‐1 in rat aortic smooth muscle. Platelet‐derived growth factor‐BB increased cell migration and proliferation in rat aortic smooth muscle cells, and subsequent SIN‐1 treatment inhibited it. Administration of SIN‐1 in vivo attenuated neointima formation in balloon‐injured rat carotid arteries. Proteomic analysis showed that glutathione peroxidase and 40S ribosomal protein S12 were differentially expressed in aortic strips exposed to SIN‐1. Expression of annexin A2 was decreased by SIN‐1. Platelet‐derived growth factor‐BB‐induced cell migration was increased and inhibited in rat aortic smooth muscle cells with overexpression and knockdown of annexin A2 gene, respectively. The expression of annexin A2 was increased in vascular neointima compared with the intact control, which was inhibited by SIN‐1 treatment. These results demonstrate that SIN‐1 may attenuate vascular neointima formation by inhibiting annexin A2‐mediated migration. Therefore, annexin A2 may be a potential target for therapeutic strategies for atherosclerosis.


BMC Cancer | 2013

Does phosphorylation of cofilin affect the progression of human bladder cancer

Hong Chung; Bokyung Kim; Seung-Hyo Jung; Kyung-Jong Won; Xiaowen Jiang; Chang-Kwon Lee; So Dug Lim; Sang-Kuk Yang; Ki Hak Song; Hong Sup Kim

BackgroundWe determined the differently expressed protein profiles and their functions in bladder cancer tissues with the aim of identifying possible target proteins and underlying molecular mechanisms for taking part in their progression.MethodsWe examined the expression of proteins by proteomic analysis and western blot in normal urothelium, non-muscle-invasive bladder cancers (NMIBCs), and muscle-invasive bladder cancers (MIBCs). The function of cofilin was analyzed using T24 human bladder cancer cells.ResultsThe expression levels of 12 proteins were altered between bladder cancers and normal bladder tissues. Of these proteins, 14-3-3σ was upregulated in both NMIBCs and MIBCs compared with controls. On the other hand, myosin regulatory light chain 2, galectin-1, lipid-binding AI, annexin V, transthyretin, CARD-inhibitor of NF-κB-activating ligand, and actin prepeptide were downregulated in cancer samples. Cofilin, an actin-depolymerizing factor, was prominent in both NMIBCs and MIBCs compared with normal bladder tissues. Furthermore, we confirmed that cofilin phosphorylation was more prominent in MIBCs than in NMIBCs using immunoblotting and immunohistochemcal analyses. Epidermal growth factor (EGF) increased the phosphorylation of cofilin and elevated the migration in T24 cells. Knockdown of cofilin expression with small interfering RNA attenuated the T24 cell migration in response to EGF.ConclusionsThese results demonstrate that the increased expression and phosphorylation of cofilin might play a role in the occurrence and invasiveness of bladder cancer. We suspected that changes in cofilin expression may participate in the progression of the bladder cancer.


Journal of Pharmacological Sciences | 2011

Protein tyrosine phosphatase SHP-2 is positively involved in platelet-derived growth factor-signaling in vascular neointima formation via the reactive oxygen species-related pathway.

Kyung-Jong Won; Hwan Myung Lee; Chang-Kwon Lee; Hai Yue Lin; Haerang Na; Ki Won Lim; Hui Yul Roh; Seobo Sim; Hyuk Song; Wahn Soo Choi; Seung-Hyun Lee; Bokyung Kim

The roles of Src homology domain 2-containing protein tyrosine phosphatase 2 (SHP-2) and its signaling in atherosclerosis have not been explored. Therefore, we investigated the roles of SHP-2 in the movement of rat aortic smooth muscle cells (RASMCs) and in the neointima formation of the carotid artery. Platelet-derived growth factor (PDGF)-BB (1 - 20 ng/ml) increased the activity and phosphorylation of SHP-2 and migration in RASMCs and these were suppressed by SHP-2 inhibitor NSC-87877 (30 μM) and small interfering RNA of SHP-2. PDGF-BB increased the phosphorylations of spleen tyrosine kinase (Syk) and p38 mitogen-activated protein kinase (MAPK), which were recovered by inhibition of SHP-2. Moreover, PDGF-BB increased the levels of reactive oxygen species (ROS) and ROS inhibitors decreased PDGF-BB-increased migration. Treatment of RASMCs with H2O2 (100 μM) increased cell migration and SHP-2 phosphorylation and also enhanced the phosphorylation levels of Syk and p38 MAPK. Oral administration of NSC-87877 (10 mg/kg) significantly suppressed neointima formation in a rat model of carotid artery injury. These results suggest that the activity of SHP-2 is controlled by ROS and is positively involved in the regulation of PDGF-BB-induced RASMC migration and neointima formation.


Journal of Vascular Research | 2008

Soluble form of vascular cell adhesion molecule 1 induces migration and proliferation of vascular smooth muscle cells.

Hwan Myung Lee; Hyo Jin Kim; Kyung-Jong Won; Wahn Soo Choi; Seung Hwa Park; Hyuk Song; Pyo-Jam Park; Tae-Kyu Park; Chang-Kwon Lee; Bokyung Kim

Background: Serum levels of soluble vascular cell adhesion molecule 1 (sVCAM-1) shed from its membrane-bound form are elevated in hypertension. This study clarified the effects of sVCAM-1 on vascular responses in rat aortic smooth muscle cells (RASMCs). Methods: Boyden chamber, 5-bromo-2′-deoxyuridine incorporation and ex vivo aortic ring assays for migration and proliferation, and Western blot for the kinase activity were used. Results: Spontaneously hypertensive rats (SHR) and Wistar Kyoto (WKY) rats were compared functionally. sVCAM-1 increased RASMC migration and proliferation, which were greater in SHR compared with WKY rats. RASMCs expressed the very late antigen 4α receptor integrin with no difference between SHR and WKY rats. Inhibitors of phosphoinositide kinase 3 (PI3K) and spleen tyrosine kinase (Syk) and small interference RNA-Syk abolished the sVCAM-1-induced migration, proliferation and phosphorylation of focal adhesion kinase. The phosphorylation of Syk was significantly greater in RASMCs from SHR than from WKY rats. sVCAM-1 increased aortic sprout outgrowth, which was inhibited by inhibitors of PI3K and Syk. Conclusions: This study suggests that sVCAM-1 promotes the RASMC migration and proliferation via the focal adhesion kinase pathway regulated by Syk and PI3K, and the altered sVCAM-1-induced responses during hypertension are closely associated with the increments in intracellular signal transmission.


Toxicological Sciences | 2012

Antifungal Miconazole Induces Cardiotoxicity Via Inhibition of APE/Ref-1-Related Pathway in Rat Neonatal Cardiomyocytes

Kyung-Jong Won; Hai Yue Lin; Soohyun Jung; Soo Min Cho; Ho-Chul Shin; Young Min Bae; Seung-Hyun Lee; Hyun Jung Kim; Byeong Hwa Jeon; Bokyung Kim

Effects of miconazole, an azole antifungal, have not been fully determined in cardiomyocytes. We therefore identified the transcriptome in neonatal rat cardiomyocytes responding to miconazole using DNA microarray analysis and selected a gene and investigated its role in cardiomyocytes. Miconazole dose-dependently increased the levels of superoxide (O(2)(-)) and apoptosis in cardiomyocytes; these increases were inhibited by treatment with antioxidants. The DNA microarray revealed that 4163 genes were upregulated and 4829 genes downregulated by more than threefold in miconazole-treated cardiomyocytes compared with the vehicle-treated control. Moreover, redox homeostasis-, oxidative stress-, and reactive oxygen species (ROS)-related categories of genes were strongly affected by miconazole treatment. Among genes overlapped in all these categories, apurinic/apyrimidinic endonuclease-1/redox factor-1 (APE/Ref-1), a redox-related gene, was prominent and was diminished in the miconazole-treated group. Changes in the O(2)(-) production and apoptosis induction in response to miconazole were inhibited in cardiomyocytes transfected with adenoviral APE/Ref-1. Overexpression of APE/Ref-1 reversed the reduction in beating frequency induced by miconazole. Our results demonstrate that miconazole may induce rat cardiotoxicity via a ROS-mediated pathway, which is initiated by the inhibition of APE/Ref-1 expression. This possible new adverse event in cardiomyocyte function caused by miconazole may provide a basis for the development of novel antifungal agents.


The Korean Journal of Physiology and Pharmacology | 2009

Olibanum Extract Inhibits Vascular Smooth Muscle Cell Migration and Proliferation in Response to Platelet-Derived Growth Factor

Ok-Byung Choi; Joo-Hoon Park; Ye Jin Lee; Chang-Kwon Lee; Kyung-Jong Won; Junghwan Kim; Hwan Myung Lee; Bokyung Kim

Olibanum (Boswellia serrata) has been shown to have anti-inflammatory, anti-arthritic and anti-cancer effects. This study determined the role of a water extract of olibanum in platelet-derived growth factor (PDGF)-stimulated proliferation and migration of rat aortic smooth muscle cells (RASMCs). PDGF-BB induced the migration and proliferation of RASMCs that were inhibited by olibanum extract in a dose-dependent manner. The PDGF-BB-increased phosphorylation of p38 mitogen-activated protein kinase (MAPK); the heat shock protein (Hsp) 27 was significantly inhibited by the olibanum extract. The effects of PDGF-BB-induced extracellular signal-regulated kinase1/2 was not altered by the olibanum extract. Treatment with olibanum extract inhibited PDGF-BB-stimulated sprout out growth of aortic rings. These results suggest that the water extract of olibanum inhibits PDGF-BB-stimulated migration and proliferation in RASMCs as well as sprout out growth, which may be mediated by the inhibition of the p38 MAPK and Hsp27 pathways.


Archives of Pharmacal Research | 2007

Spleen tyrosine kinase participates in src-mediated migration and proliferation by PDGF-BB in rat aortic smooth muscle cells

Hwan Myung Lee; Hyo Jin Kim; Hyo-Jun Park; Kyung-Jong Won; Junghwan Kim; Hwa-Sup Shin; Pyo-Jam Park; Hyun-Jun Kim; Kyung-Yung Lee; Seung Hwa Park; Chang-Kwon Lee; Bokyung Kim

Tyrosine kinases, Src and spleen tyrosine kinase (Syk), play crucial roles in cell responses to platelet-derived growth factor (PDGF) and may have their functional interactions. In this study, we focused on investigating the roles of Syk in the regulation of Src signaling in PDGF-mediated vascular cell responses. Migration, proliferation, and activity of kinases were determined in rat aortic smooth muscle cells (RASMCs). PDGF-BB (10 ng/mL) induced the migration and proliferation of RASMCs, which were significantly inhibited by PP2 (10 μM) and piceatannol (30 μM), inhibitors of Src and Syk, respectively. The phosphorylation of Syk induced by PDGF-BB was abolished by PP2. PDGF-BB increased the co-association of the PDGFβ-receptor and the kinases, Src or Syk, and its maximal binding to Src was achieved in a shorter time than that to Syk. PDGF-BB stimulated the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) 1/2, which was inhibited by PP2 and piceatannol. PDGF-BB-induced proliferation and migration were inhibited by SB203580 (30 μM) and PD98059 (30 μM), inhibitors of p38 MAPK and ERK1/2, respectively. These results imply that Syk is regulated by Src kinase, which participates in migration and proliferation in response to PDGF-BB in RASMCs.

Collaboration


Dive into the Kyung-Jong Won's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge