Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kyung Ok Yu is active.

Publication


Featured researches published by Kyung Ok Yu.


Biotechnology and Bioengineering | 2012

Synthesis of FAEEs from glycerol in engineered Saccharomyces cerevisiae using endogenously produced ethanol by heterologous expression of an unspecific bacterial acyltransferase.

Kyung Ok Yu; Ju Jung; Seung Wook Kim; Chul Hwan Park; Sung Ok Han

The high price of petroleum‐based diesel fuel has led to the development of alternative fuels, such as ethanol. Saccharomyces cerevisiae was metabolically engineered to utilize glycerol as a substrate for ethanol production. For the synthesis of fatty acid ethyl esters (FAEEs) by engineered S. cerevisiae that utilize glycerol as substrate, heterologous expression of an unspecific acyltransferase from Acinetobacter baylyi with glycerol utilizing genes was established. As a result, the engineered YPH499 (pGcyaDak, pGupWs‐DgaTCas) strain produced 0.24 g/L FAEEs using endogenous ethanol produced from glycerol. And this study also demonstrated the possibility of increasing FAEE production by enhancing ethanol production by minimizing the synthesis of glycerol. The overall FAEE production in strain YPH499 fps1Δ gpd2Δ (pGcyaDak, pGupWs‐DgaTCas) was 2.1‐fold more than in YPH499 (pGcyaDak, pGupWs‐DgaTCas), with approximately 0.52 g/L FAEEs produced, while nearly 17 g/L of glycerol was consumed. These results clearly indicated that FAEEs were synthesized in engineered S. cerevisiae by esterifying exogenous fatty acids with endogenously produced ethanol from glycerol. This microbial system acts as a platform in applying metabolic engineering that allows the production of FAEEs from cheap and abundant substrates specifically glycerol through the use of endogenous bioethanol. Biotechnol. Bioeng. 2012;109: 110–115.


Bioresource Technology | 2010

Engineering of glycerol utilization pathway for ethanol production by Saccharomyces cerevisiae

Kyung Ok Yu; Seung Wook Kim; Sung Ok Han

Saccharomyces cerevisiae was metabolically engineered to improve ethanol production from glycerol. High rates of glycerol utilization were achieved by simultaneous overexpression of glycerol dehydrogenase (Gcy) and dihydroxyacetone kinase (Dak), which are the enzymes responsible for the conversion of glycerol to glycolytic intermediate dihydroxyacetone phosphate. As a result, ethanol production in YPH499 (pGcyaDak) was about 2.4-fold higher than wild strain. We have also successfully expressed a glycerol uptake protein (Gup1). The overall ethanol production in strain YPH499 (pGcyaDak, pGupCas) was 3.4-fold more than in wild strain, with about 2.4gL(-1) ethanol produced. These experimental results confirmed our metabolic pathway strategies which improve the production of ethanol.


Biotechnology and Bioengineering | 2013

Development of a Saccharomyces cerevisiae strain for increasing the accumulation of triacylglycerol as a microbial oil feedstock for biodiesel production using glycerol as a substrate

Kyung Ok Yu; Ju Jung; Ahmad Bazli Ramzi; Se Hoon Choe; Seung Wook Kim; Chulhwan Park; Sung Ok Han

Triacylglycerol (TAG) is a microbial oil feedstock for biodiesel production that uses an inexpensive substrate, such as glycerol. Here, we demonstrated the overproduction of TAG from glycerol in engineered Saccharomyces cerevisiae via the glycerol-3-phosphate (G3P) pathway by overexpressing the major TAG synthesis. The G3P accumulation was increased 2.4-fold with the increased glycerol utilization gained by the overexpression of glycerol kinase (GUT1). By overexpressing diacylglycerol acyltransferase (DGA1) and phospholipid diacylglycerol acyltransferase (LRO1), the engineered YPH499 (pGutDgaLro1) strain produced 23.0 mg/L lipids, whereas the YPH499 (pESC-TRP) strain produced 6.2 mg/L total lipids and showed a lipid content that was increased 1.4-fold compared with 3.6% for the wild-type strain after 96 h of cultivation. After 96 h of cultivation using glycerol, the overall content of TAG in the engineered strain, YPH499 (pGutDgaLro1), yielded 8.2% TAG, representing a 2.3-fold improvement, compared with 3.6% for the wild-type strain. The results should allow a reduction of costs and a more sustainable production of biodiesel.


New Biotechnology | 2012

The processive endoglucanase EngZ is active in crystalline cellulose degradation as a cellulosomal subunit of Clostridium cellulovorans.

Sang Duck Jeon; Kyung Ok Yu; Seung Wook Kim; Sung Ok Han

Clostridium cellulovorans produces an efficient enzyme complex for the degradation of lignocellulosic biomass. In our previous study, we detected and identified protein spots that interacted with a fluorescently labeled cohesin biomarker via two-dimensional gel electrophoresis. One novel, putative cellulosomal protein (referred to as endoglucanase Z) contains a catalytic module from the glycosyl hydrolase family (GH9) and demonstrated higher levels of expression than other cellulosomal cellulases in Avicel-containing cultures. Purified EngZ had optimal activity at pH 7.0, 40°C, and the major hydrolysis product from the cellooligosaccharides was cellobiose. EngZs specific activity toward crystalline cellulose (Avicel and acid-swollen cellulose) was 10-20-fold higher than other cellulosomal cellulase activities. A large percentage of the reducing ends that were produced by this enzyme from acid-swollen cellulose were released as soluble sugar. EngZ has the capability of reducing the viscosity of Avicel at an intermediate-level between exo- and endo-typing cellulases, suggesting that it is a processive endoglucanase. In conclusion, EngZ was highly expressed in cellulolytic systems and demonstrated processive endoglucanase activity, suggesting that it plays a major role in the hydrolysis of crystalline cellulose and acts as a cellulosomal enzyme in C. cellulovorans.


Journal of Biotechnology | 2010

Reduction of glycerol production to improve ethanol yield in an engineered Saccharomyces cerevisiae using glycerol as a substrate.

Kyung Ok Yu; Seung Wook Kim; Sung Ok Han

Ethanol plays an important role in substituting the increasingly limited oil as the high-value, renewable fuel. In our previous studies, we successfully established the conversion of glycerol to ethanol by overexpression of pGcyaDak with pGup1Cas in Saccharomyces cerevisiae. In addition to increasing ethanol production using glycerol as substrate, we minimized the synthesis of glycerol, which is the main by-product in ethanol fermentation processing. The glycerol production pathway was impaired by deletion of the genes FPS1 and GPD2. Strains deleted for both FPS1 and GPD2 reduce glycerol production and become highly sensitive to osmotic stress. We provide osmotic protection in YPH499fps1Δgpd2Δ by overexpression of Gup1. In this study, S. cerevisiae using glycerol as substrate was modified through one-step gene disruption for redirection of glycerol carbon flux into ethanol by the deletion of two glycerol production genes, FPS1 and GPD2. The overall ethanol production in the modified strain YPH499fps1Δgpd2Δ (pGcyaDak, pGupCas) was about 4.4 gl⁻¹. These results demonstrate the possibility of providing protection against osmotic stress while simultaneously increasing ethanol and reducing glycerol production in S. cerevisiae strains using glycerol as a carbon source.


Biotechnology and Bioengineering | 2012

Improvement of surfactin production in Bacillus subtilis using synthetic wastewater by overexpression of specific extracellular signaling peptides, comX and phrC

Ju Jung; Kyung Ok Yu; Ahmad Bazli Ramzi; Se Hoon Choe; Seung Wook Kim; Sung Ok Han

Surfactin is a biological surfactant with numerous potential applications. In this study, Bacillus subtilis was engineered to improve surfactin production by the activation of two competence‐stimulating pheromones, ComX and competence and sporulation factor (CSF) to stimulate the transcription of srfA operon. Both signaling factors, encoded by comX and phrC, were successfully overexpressed and subsequently increased surfactin production. Surfactin produced by engineered strains showed functional groups similar to the commercially available surfactin analyzed via Fourier transform infrared spectroscopy (FTIR). Surfactin production in the B. subtilis (pHT43‐comXphrC) strain was 6.4‐fold greater than in the wild strain, with approximately 135.1 mg/L surfactin produced after 48 h cultivation. To reduce the production costs of surfactin, synthetic wastewater was used, from which the B. subtilis (pHT43‐comXphrC) strain produced approximately 140.2 mg/L surfactin. The results obtained demonstrated the production of surfactin from synthetic wastewater, which is beneficial in lowering the overall production costs. Biotechnol. Bioeng. 2012;109: 2349–2356.


Journal of Bioscience and Bioengineering | 2010

Enhancement of the thermostability and activity of mesophilic Clostridium cellulovorans EngD by in vitro DNA recombination with Clostridium thermocellum CelE.

Chae Yoeng Lee; Kyung Ok Yu; Seung Wook Kim; Sung Ok Han

The thermal stability and catalytic activity of endoglucanase (EngD) from mesophilic Clostridium cellulovorans were improved by evolutionary molecular engineering. Thermostable mutants were isolated after staggered extension process (StEP) with celE from thermophilic Clostridium thermocellum performed to conduct family shuffling and overlay screening of the resultant mutant library. The relative activity of the best-evolved clone has been improved of about 2 times higher at 50 degrees C and showed a higher k(cat)/K(m) value than its engD parental clone. We determined that these variants had two amino acid substitutions (L157N, Q158E) and confirmed their effects by substituting these amino acids in the parental gene by site-directed mutagenesis. These substitutions resulted in an increase in hydrophilic or charged residues. Our results demonstrate that in vitro recombination is an effective approach to improve the thermostability and enzymatic activity of a mesophilic enzyme.


Enzyme and Microbial Technology | 2012

Increased ethanol production from glycerol by Saccharomyces cerevisiae strains with enhanced stress tolerance from the overexpression of SAGA complex components.

Kyung Ok Yu; Ju Jung; Ahmad Bazli Ramzi; Se Hoon Choe; Seung Wook Kim; Chulhwan Park; Sung Ok Han

During the industrial production of ethanol using yeast, the cells are exposed to stresses that affect their growth and productivity; therefore, stress-tolerant yeast strains are highly desirable. To increase ethanol production from glycerol, a greater tolerance to osmotic and ethanol stress was engineered in yeast strains that were impaired in endogenous glycerol production by the overexpression of both SPT3 and SPT15, components of the SAGA (Spt-Ada-Gcn5-acetyltransferase) complex. The engineered strain YPH499fps1Δgpd2Δ (pGcyaDak, pGupSpt3.15Cas) formed significantly more biomass compared to the strain YPH499fps1Δgpd2Δ (pGcyaDak, pGupCas), and both engineered strains displayed increased biomass when compared to the control YPH499 fps1Δgpd2Δ (pESC-TRP) strain. The trehalose accumulation and ergosterol content of these strains were 2.3-fold and 1.6-fold higher, respectively, than the parent strains, suggesting that levels of cellular membrane components were correlated with the enhanced stress tolerance of the engineered strains. Consequently, the ethanol production of the engineered strain YPH499fps1Δgpd2Δ (pGcyaDak, pGupSpt3.15Cas) was 1.8-fold more than that of strain YPH499fps1Δgpd2Δ (pGcyaDak, pGupCas), with about 8.1g/L ethanol produced. In conclusion, we successfully established that the co-expression of SPT3 and SPT15 that improved the fermentation performance of the engineered yeast strains which produced higher ethanol yields than stress-sensitive yeast strains.


Applied Microbiology and Biotechnology | 2011

A celluloytic complex from Clostridium cellulovorans consisting of mannanase B and endoglucanase E has synergistic effects on galactomannan degradation

Sang Duck Jeon; Kyung Ok Yu; Seung Wook Kim; Sung Ok Han


Applied Biochemistry and Biotechnology | 2012

Improvement of Ethanol Yield from Glycerol via Conversion of Pyruvate to Ethanol in Metabolically Engineered Saccharomyces cerevisiae

Kyung Ok Yu; Ju Jung; Ahmad Bazli Ramzi; Seung Wook Kim; Chulhwan Park; Sung Ok Han

Collaboration


Dive into the Kyung Ok Yu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge