Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kyung Sun Heo is active.

Publication


Featured researches published by Kyung Sun Heo.


Nature Communications | 2012

CYLD negatively regulates transforming growth factor-β-signalling via deubiquitinating Akt.

Jae Hyang Lim; Hirofumi Jono; Kensei Komatsu; Chang Hoon Woo; Ji-Yun Lee; Masanori Miyata; Takashi Matsuno; Xiangbin Xu; Yuxian Huang; Wenhong Zhang; Soo Hyun Park; Yu Il Kim; Yoo Duk Choi; Huahao Shen; Kyung Sun Heo; Haodong Xu; Patricia A. Bourne; Tomoaki Koga; Haidong Xu; Chen Yan; Binghe Wang; Lin Feng Chen; Xin-Hua Feng; Jian-Dong Li

Lung injury, whether induced by infection or caustic chemicals, initiates a series of complex wound-healing responses. If uncontrolled, these responses may lead to fibrotic lung diseases and loss of function. Thus, resolution of lung injury must be tightly regulated. The key regulatory proteins required for tightly controlling the resolution of lung injury have yet to be identified. Here we show that loss of deubiquitinase CYLD led to the development of lung fibrosis in mice after infection with Streptococcus pneumoniae. CYLD inhibited transforming growth factor-β-signalling and prevented lung fibrosis by decreasing the stability of Smad3 in an E3 ligase carboxy terminus of Hsc70-interacting protein-dependent manner. Moreover, CYLD decreases Smad3 stability by deubiquitinating K63-polyubiquitinated Akt. Together, our results unveil a role for CYLD in tightly regulating the resolution of lung injury and preventing fibrosis by deubiquitinating Akt. These studies may help develop new therapeutic strategies for preventing lung fibrosis.


Blood | 2010

PKCζ decreases eNOS protein stability via inhibitory phosphorylation of ERK5

Patrizia Nigro; Jun Ichi Abe; Chang Hoon Woo; Kimio Satoh; Carolyn McClain; Michael R. O'Dell; Hakjoo Lee; Jae Hyang Lim; Jian-Dong Li; Kyung Sun Heo; Keigi Fujiwara; Bradford C. Berk

PKCζ has emerged as a pathologic mediator of endothelial cell dysfunction, based on its essential role in tumor necrosis factor α (TNFα)-mediated inflammation. In contrast, extracellular signal-regulated kinase 5 (ERK5) function is required for endothelial cell homeostasis as shown by activation of Krüppel-like factor 2 (KLF2), increased endothelial nitric-oxide synthase (eNOS) expression, and inhibition of apoptosis. We hypothesized that protein kinase C ζ (PKCζ) activation by TNFα would inhibit the ERK5/KLF2/eNOS pathway. TNFα inhibited the steady laminar flow-induced eNOS expression, and this effect was reversed by the dominant-negative form of PKCζ (Ad.DN-PKCζ). In addition, ERK5 function was inhibited by either TNFα or the transfection of the catalytic domain of PKCζ. This inhibition was reversed by PKCζ small interfering RNA. PKCζ was found to bind to ERK5 under basal conditions with coimmunoprecipitation and the mammalian 2-hybrid assay. Furthermore, PKCζ phosphorylates ERK5, and mutation analysis showed that the preferred site is S486. Most importantly, we found that the predominant effect of TNFα stimulation of PKCζ was to decrease eNOS protein stability that was recapitulated by transfecting Ad.ERK5S486A mutant. Finally, aortic en face analysis of ERK5/PKCζ activity showed high PKCζ and ERK5 staining in the athero-prone region. Taken together our results show that PKCζ binds and phosphorylates ERK5, thereby decreasing eNOS protein stability and contributing to early events of atherosclerosis.


Journal of Cell Biology | 2011

PKCζ mediates disturbed flow-induced endothelial apoptosis via p53 SUMOylation

Kyung Sun Heo; Hakjoo Lee; Patrizia Nigro; Tamlyn Thomas; Nhat Tu Le; Eugene B. Chang; Carolyn McClain; Cynthia A. Reinhart-King; Michael R. King; Bradford C. Berk; Keigi Fujiwara; Chang Hoon Woo; Jun Ichi Abe

Disturbed flow-mediated PKCζ–PIASy association is critical for p53 SUMOylation and induces p53 nuclear export and endothelial cell apoptosis.


Circulation | 2013

A Crucial Role for p90RSK-Mediated Reduction of ERK5 Transcriptional Activity in Endothelial Dysfunction and Atherosclerosis

Nhat Tu Le; Kyung Sun Heo; Yuichiro Takei; Hakjoo Lee; Chang Hoon Woo; Eugene B. Chang; Carolyn McClain; Cheryl Hurley; Xin Wang; Faqian Li; Haodong Xu; Craig N. Morrell; Mark A. Sullivan; Michael S. Cohen; Iana M. Serafimova; Jack Taunton; Keigi Fujiwara; Jun Ichi Abe

Background— Diabetes mellitus is a major risk factor for cardiovascular mortality by increasing endothelial cell (EC) dysfunction and subsequently accelerating atherosclerosis. Extracellular-signal regulated kinase 5 (ERK5) is activated by steady laminar flow and regulates EC function by increasing endothelial nitric oxide synthase expression and inhibiting EC inflammation. However, the role and regulatory mechanisms of ERK5 in EC dysfunction and atherosclerosis are poorly understood. Here, we report the critical role of the p90 ribosomal S6 kinase (p90RSK)/ERK5 complex in EC dysfunction in diabetes mellitus and atherosclerosis. Methods and Results— Inducible EC-specific ERK5 knockout (ERK5-EKO) mice showed increased leukocyte rolling and impaired vessel reactivity. To examine the role of endothelial ERK5 in atherosclerosis, we used inducible ERK5-EKO-LDLR−/− mice and observed increased plaque formation. When activated, p90RSK associated with ERK5, and this association inhibited ERK5 transcriptional activity and upregulated vascular cell adhesion molecule 1 expression. In addition, p90RSK directly phosphorylated ERK5 S496 and reduced endothelial nitric oxide synthase expression. p90RSK activity was increased in diabetic mouse vessels, and fluoromethyl ketone-methoxyethylamine, a specific p90RSK inhibitor, ameliorated EC-leukocyte recruitment and diminished vascular reactivity in diabetic mice. Interestingly, in ERK5-EKO mice, increased leukocyte rolling and impaired vessel reactivity were resistant to the beneficial effects of fluoromethyl ketone-methoxyethylamine, suggesting a critical role for endothelial ERK5 in mediating the salutary effects of fluoromethyl ketone-methoxyethylamine on endothelial dysfunction. Fluoromethyl ketone-methoxyethylamine also inhibited atherosclerosis formation in ApoE−/− mice. Conclusions— Our study highlights the importance of the p90RSK/ERK5 module as a critical mediator of EC dysfunction in diabetes mellitus and atherosclerosis formation, thus revealing a potential new target for therapeutic intervention.


Molecules and Cells | 2014

Shear Stress and Atherosclerosis

Kyung Sun Heo; Keigi Fujiwara; Jun Ichi Abe

Hemodynamic shear stress, the frictional force acting on vascular endothelial cells, is crucial for endothelial homeostasis under normal physiological conditions. When discussing blood flow effects on various forms of endothelial (dys)function, one considers two flow patterns: steady laminar flow and disturbed flow because endothelial cells respond differently to these flow types both in vivo and in vitro. Laminar flow which exerts steady laminar shear stress is atheroprotective while disturbed flow creates an atheroprone environment. Emerging evidence has provided new insights into the cellular mechanisms of flow-dependent regulation of vascular function that leads to cardiovascular events such as atherosclerosis, atherothrombosis, and myocardial infarction. In order to study effects of shear stress and different types of flow, various models have been used. In this review, we will summarize our current views on how disturbed flow-mediated signaling pathways are involved in the development of atherosclerosis.


The FASEB Journal | 2010

Novel role of C terminus of Hsc70-interacting protein (CHIP) ubiquitin ligase on inhibiting cardiac apoptosis and dysfunction via regulating ERK5-mediated degradation of inducible cAMP early repressor

Chang Hoon Woo; Nhat Tu Le; Tetsuro Shishido; Eugene B. Chang; Hakjoo Lee; Kyung Sun Heo; Deanne Mickelsen; Yan Lu; Carolyn McClain; Thomas Spangenberg; Chen Yan; Carlos A. Molina; Jay Yang; Cam Patterson; Jun Ichi Abe

Growing evidence indicates a critical role of ubiquitin-proteosome system in apoptosis regulation. A cardioprotective effect of ubiquitin (Ub) ligase of the C terminus of Hsc70-interacting protein (CHIP) on myocytes has been reported. In the current study, we found that the cardioprotective effect of insulin growth factor-1 (IGF-1) was mediated by ERK5-CHIP signal module via inducible cAMP early repressor (ICER) destabilization. In vitro runoff assay and Ub assay showed ICER as a substrate of CHIP Ub ligase. Both disruption of ERK5-CHIP binding with inhibitory helical linker domain fragment (aa 101-200) of CHIP and the depletion of ERK5 by siRNA inhibited CHIP Ub ligase activity, which suggests an obligatory role of ERK5 on CHIP activation. Depletion of CHIP, using siRNA, inhibited IGF-1-mediated reduction of isoproterenol-mediated ICER induction and apoptosis. In diabetic mice subjected to myocardial infarction, the CHIP Ub ligase activity was decreased, with an increase in ICER expression. These changes were attenuated significantly in a cardiac-specific constitutively active form of MEK5α transgenic mice (CA-MEK5α-Tg) previously shown to have greater functional recovery. Furthermore, pressure overload-mediated ICER induction was enhanced in heterozygous CHIP(+/-) mice. We identified ICER as a novel CHIP substrate and that the ERK5-CHIP complex plays an obligatory role in inhibition of ICER expression, cardiomyocyte apoptosis, and cardiac dysfunction.


Circulation Research | 2012

p90RSK Targets the ERK5-CHIP Ubiquitin E3 Ligase Activity in Diabetic Hearts and Promotes Cardiac Apoptosis and Dysfunction

Nhat Tu Le; Yuichiro Takei; Tetsuro Shishido; Chang Hoon Woo; Eugene B. Chang; Kyung Sun Heo; Hakjoo Lee; Yan Lu; Craig N. Morrell; Masayoshi Oikawa; Carolyn McClain; Xin Wang; Cathy Tournier; Carlos A. Molina; Jack Taunton; Chen Yan; Keigi Fujiwara; Cam Patterson; Jay Yang; Jun Ichi Abe

Rationale: Cardiomyocyte apoptosis is one of the key events in the development and progression of heart failure, and a crucial role for ICER (inducible cAMP early repressor) in this process has been previously reported. ERK5 is known to inhibit cardiac apoptosis after myocardial infarction (MI), especially in hyperglycemic states, via association with CHIP ubiquitin (Ub) ligase and subsequent upregulation of CHIP ligase activity, which induces ICER ubiquitination and subsequent protein degradation. The regulatory mechanism governing ERK5/CHIP interaction is unknown. Objective: We previously demonstrated increased p90RSK activation in the diabetic heart. As a logical extension of this work, we now investigate whether p90RSK activation inhibits ERK5-mediated CHIP activation, and subsequently increases ICER levels and apoptosis. Methods and Results: p90RSK activation inhibits ERK5/CHIP association and CHIP Ub ligase activity. p90RSK and CHIP share a common binding site in the ERK5 C-terminal domain (aa571–807). Overexpression of either p90RSK or an ERK5 fragment (aa571–807) inhibits ERK5/CHIP association, suggesting that p90RSK and CHIP competes for ERK5 binding and that p90RSK activation is critical for inhibiting ERK5/CHIP interaction. We also identified ERK5-S496 as being directly phosphorylated by p90RSK and demonstrated that an ERK5-S496A mutant significantly impairs Angiotensin II–mediated inhibition of CHIP activity and subsequent increase in ICER levels. In vivo, either cardiac-specific depletion of ERK5 or overexpression of p90RSK inhibits CHIP activity and accelerates cardiac apoptosis after MI—a phenomenon fully reversible by activating ERK5. Conclusions: These data suggest a role for p90RSK in inhibiting CHIP activity and promoting cardiac apoptosis through binding to and phosphorylation of ERK5-S496.


Blood | 2011

MK2 SUMOylation regulates actin filament remodeling and subsequent migration in endothelial cells by inhibiting MK2 kinase and HSP27 phosphorylation

Eugene B. Chang; Kyung Sun Heo; Chang Hoon Woo; Hakjoo Lee; Nhat Tu Le; Tamlyn Thomas; Keigi Fujiwara; Jun Ichi Abe

Actin filament remodeling regulates several endothelial cell (EC) processes such as contraction, migration, adhesion, and shape determination. Mitogen-activated protein kinase (MAPK)-activated protein kinase 2 (MK2)-mediated phosphorylation of heat-shock protein 27 kDa (HSP27) promotes actin filament remodeling, but little is known about the regulation of this event in ECs. We found that tumor necrosis factor-α (TNF-α) SUMOylated MK2 at lysine (K)-339 affected EC actin filament organization and migration. Loss of the MK2 SUMOylation site (MK2-K339R) increased MK2 kinase activity and prolonged HSP27 phosphorylation, enhancing its effects on actin filament-dependent events. Both TNF-α-mediated EC elongation and steady laminar shear stress-mediated EC alignment were increased by MK2-K339R. Moreover, kinase-dead dominant-negative MK2 (DN-MK2) inhibited these effects. Cell migration is a dynamic process regulated by actin filament remodeling. Both wild-type MK2 (WT-MK2) and DN-MK2 significantly enhanced TNF-mediated inhibition of EC migration, and MK2-K339R further augmented this effect. Interestingly, the p160-Rho-associated coiled-coil kinase (ROCK) inhibitor Y-27632 reversed this effect by MK2-K339R, which strongly suggests that both excessive and insufficient levels of actin filament remodeling can block EC migration. Our study shows that MK2 SUMOylation is a new mechanism for regulating actin filament dynamics in ECs.


Journal of Clinical Investigation | 2015

Disturbed flow-activated p90RSK kinase accelerates atherosclerosis by inhibiting SENP2 function

Kyung Sun Heo; Nhat Tu Le; Hannah J. Cushman; Carolyn J. Giancursio; Eugene B. Chang; Chang Hoon Woo; Mark A. Sullivan; Jack Taunton; Edward T.H. Yeh; Keigi Fujiwara; Jun Ichi Abe

Disturbed blood flow (d-flow) causes endothelial cell (EC) dysfunction, leading to atherosclerotic plaque formation. We have previously shown that d-flow increases SUMOylation of p53 and ERK5 through downregulation of sentrin/SUMO-specific protease 2 (SENP2) function; however, it is not known how SENP2 itself is regulated by d-flow. Here, we determined that d-flow activated the serine/threonine kinase p90RSK, which subsequently phosphorylated threonine 368 (T368) of SENP2. T368 phosphorylation promoted nuclear export of SENP2, leading to downregulation of eNOS expression and upregulation of proinflammatory adhesion molecule expression and apoptosis. In an LDLR-deficient murine model of atherosclerosis, EC-specific overexpression of p90RSK increased EC dysfunction and lipid accumulation in the aorta compared with control animals; however, these pathologic changes were not observed in atherosclerotic mice overexpressing dominant negative p90RSK (DN-p90RSK). Moreover, depletion of SENP2 in these mice abolished the protective effect of DN-p90RSK overexpression. We propose that p90RSK-mediated SENP2-T368 phosphorylation is a master switch in d-flow-induced signaling, leading to EC dysfunction and atherosclerosis.


Circulation | 2014

ERK5 Activation in Macrophages Promotes Efferocytosis and Inhibits Atherosclerosis

Kyung Sun Heo; Hannah J. Cushman; Masashi Akaike; Chang Hoon Woo; Xin Wang; Xing Qiu; Keigi Fujiwara; Jun Ichi Abe

Background— Efferocytosis is a process by which dead and dying cells are removed by phagocytic cells. Efferocytosis by macrophages is thought to curb the progression of atherosclerosis, but the mechanistic insight of this process is lacking. Methods and Results— When macrophages were fed apoptotic cells or treated with pitavastatin in vitro, efferocytosis-related signaling and phagocytic capacity were upregulated in an ERK5 activity–dependent manner. Macrophages isolated from macrophage-specific ERK5-null mice exhibited reduced efferocytosis and levels of gene and protein expression of efferocytosis-related molecules. When these mice were crossed with low-density lipoprotein receptor−/− mice and fed a high-cholesterol diet, atherosclerotic plaque formation was accelerated, and the plaques had more advanced and vulnerable morphology. Conclusions— Our results demonstrate that ERK5, which is robustly activated by statins, is a hub molecule that upregulates macrophage efferocytosis, thereby suppressing atherosclerotic plaque formation. Molecules that upregulate ERK5 and its signaling in macrophages may be good drug targets for suppressing cardiovascular diseases.

Collaboration


Dive into the Kyung Sun Heo's collaboration.

Top Co-Authors

Avatar

Jun Ichi Abe

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nhat Tu Le

University of Rochester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hakjoo Lee

University of Rochester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge