Kyunghyun Kim
National Institute of Environmental Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kyunghyun Kim.
Journal of Korean Society on Water Environment | 2014
Chang Min Shin; Eun Hye Na; Duck Gil Kim; Kyunghyun Kim
A watershed model was constructed using Hydrological Simulation Program Fortran to predict the water temperature at major tributaries of Nakdong River basin, Korea. Water temperature is one of the most fundamental indices used to determine the nature of an aquatic environment. Most processes of an aquatic environment such as saturation level of dissolved oxygen, the decay rate of organic matter, the growth rate of phytoplankton and zooplankton are affected by temperature. The heat flux to major reservoirs and tributaries was analyzed to simulate water temperature accurately using HSPF model. The annual mean heat flux of solar radiation was estimated to 150 ~ 165 W/m, longwave radiation to -48 ~ -113 W/m, evaporative heat loss to -39 ~ -115 W/m, sensible heat flux to -13 ~ -22 W/m, precipitation heat flux to 2 ~ 4 W/m, bed heat flux to -24 ~ 22 W/m respectively. The model was calibrated at major reservoir and tributaries for a three-year period (2008 to 2010). The deviation values (Dv) of water temperature ranged from -6.0 to 3.7%, Nash-Sutcliffe efficiency(NSE) of 0.88 to 0.95, root mean square error(RMSE) of 1.7 ~ 2.8°C. The operational water temperature forecasting results presented in this study were in good agreement with measured data and had a similar accuracy with model calibration results.
The Journal of Water Management Modeling | 2016
Hamideh Riazi; Sunghee Kim; Dong Jun Seo; Changmin Shin; Kyunghyun Kim
Being able to predict water quality in river systems accurately is critical to protecting public health from harmful water quality conditions such as algal blo…
Journal of Environmental Sciences-china | 2016
Yeonhwa Kim; Eunhyung Lee; Kyunghyun Kim; Sang-Hyun Kim
Algal blooming in 4 major rivers introduces substantial impacts to water front activity. Concentrations of algae are increasing at major points along the Geum River. Ecosystem food webs can be affected by algal blooming because blue-green algae release toxic materials. Even though there have been many studies on blue-green algae, its causality to environmental factors has not been completely determined yet. This study analyzed the exclusive correlation between various hydrometeorological, water quality, and hydrologic variables and the cell number of cyanobacteria to understand causality of blue-green algae in the Geum River. A prewhitening process was introduced to remove the autocorrelation structure and periodicity, which is useful to evaluate the effective relationship between two time series.
Journal of Korean Society on Water Environment | 2015
Eun Hye Na; Suyoung Park; Jongha Kim; Seongsoo Im; Kyunghyun Kim
AbstractWe investigated the spatial and temporal patterns of water quality in the Gangjung-Goryoung weir that is located in the middle area of the Nakdong river, Korea. The monitoring results indicated that there are discernible vertical differences in water quality during the pre- and post-monsoon periods (May to September). During this period, it was observed that the weak thermal stratification formed at the maximum level, and pH, Chl-a, and DO concentrations in the surface layer were higher than those in the bottom layer. This vertical difference was especially noticeable for DO concentrations: there were DO depletions at the bottom layer in late June to early August. During the summer monsoon period with heavy rainfall, there was a decline in vertical differences in water quality. From this study, it was suggested that continuous monitoring of vertical profiles could become a useful tool for identifying the spatial and temporal distributions of water quality and for developing the best management policy for water quality in the Nakdong river.Key words: Algal bloom, DO depletion, Gangjung-Goryoung weir, Nakdong river, Thermal stratification
Science of The Total Environment | 2018
Naree Park; Younghun Choi; Deokwon Kim; Kyunghyun Kim; Junho Jeon
Pharmaceuticals and personal care products (PPCPs) in the Yeongsan River, Korea were prioritized via suspect and non-target analysis using LC-HRMS (QExactive plus Orbitrap) followed by semi-quantitative analysis to confirm the priority of PPCPs. A scoring and ranking system for prioritization was suggested based on occurrence frequency and chromatographic peak area or concentration. Through suspect and non-target screening, more than 50 PPCPs were tentatively identified and ranked by the scoring system. Among them, 28 substances were finally confirmed using reference standards. For estimating concentration, 26 confirmed PPCPs and 12 additional substances not included in the first ranking were semi-quantitatively analyzed. We found that carbamazepine, metformin, paraxanthine, naproxen, and fluconazole occurred 100% of the time above the limit of quantification in 14 samples, whereas carbamazepine, metformin, paraxanthine, caffeine, and cimetidine showed maximum concentrations above 1000 ng/L. Thus, in the final prioritization list, carbamazepine, metformin, and paraxanthine shared first place, followed by caffeine, cimetidine, lidocaine, naproxen, cetirizine, climbazole, fexofenadine, tramadol, and fluconazole, with scores of 100 or above. We suggest that these 12 PPCPs are the most highly exposable substances, and thus must be considered in future water monitoring in the Yeongsan River.
Journal of Korea Water Resources Association | 2016
Eun Hyung Lee; Yeonhwa Kim; Kyunghyun Kim; Sang-Hyun Kim
남조류의 대번성은 특정 생물종의 감소와 물고기의 서식처를 감소하게 하는 결과를 가져와서 생태계에 상당한 교란을 가져오고 4대강의 수질을 위협하고 있다. 조류의 대번성에 영향을 미치는 인자를 해석하기 위해서 전통적으로 클로르필 a의 농도와 환경인자간의 교차상관함수를 계산하는 방식이 수행되어왔다. 교차상관함수에 사용되는 원 시계열 자료는 추계구조에 의해 영향을 받기 때문에 시계열 데이터의 추계학적인 구조를 파악하고 외부의 영향을 제거하는 선백색화 기법을 도입하였다. 이와 같은 모의과정은 모형구조의 파악, 매개변수추정, 선택된 모형의 자가진단수행등의 일련의 과정으로 진행된다. 선백색화 처리된 데이터를 이용하여 배타적 상관분석을 실시하였고 원데이터의 결과와 비교하였다. 이와 같은 과정은 조류농도 발생의 영향 인자를 구분하기 위해서도 유용한 과정이고 다른 환경인자들 사이에서의 인과성을 규명하는데도 유용하다. 【Algal blooms not only destroy fish habitats but also diminish biological diversity of ecosystem which results into water quality deterioration of 4 major rivers in South Korea. The relationship between algal bloom and environmental factors had been analyzed through the cross-correlation function between concentration of chlorophyll a and other environmental factors. However, time series of cross-correlations can be affected by the stochastic structure such auto-correlated feature of other controllers. In order to remove external effect in the correlation analysis, the pre-whitening procedure was implemented into the cross correlation analysis. The modeling process is consisted of a series of procedure (e.g., model identification, parameter estimation, and diagnostic checking of selected models). This study provides the exclusive correlation relationship between algae concentration and other environmental factors. The difference between the conventional correlation using raw data and that of pre-whitened series was discussed. The process implemented in this paper is useful not only to identify exclusive environmental variables to model Chl-a concentration but also in further extensive application to configure causality in the environment.】
Journal of Korea Water Resources Association | 2002
Kyunghyun Kim; Hak-Su Lee; Won Kim; Sung-Won Jung; Sanghyun Kim
The effects of the temporal scale of input hydrological data on runoff simulation have been studied using hydrological data with various time scales. TOPMODEL has been employed to explores these effects. The Genetic a1gorithm was used to calibrate model Parameters. The results of sensitivity analysis in various time scales provide the insight of parameter space for TOPMODEL operation of different time scale. The variation of temporal scale of input hydrological data appeared to have significant impacts on the model efficiency, average water table depth, the ratio of the surface runoff to the total runoff and the calibrated parameters. Generally, the longer the time scale, the more surface runoff and the less average water table death were calculated. It is found that the impact of lime scale to runoff simulation results from the structure of TOPMODEL and the hydrographic morphology.
Journal of The American Water Resources Association | 2008
Anita M. Thompson; Kyunghyun Kim; Anthony Vandermuss
Journal of Hydrology | 2014
Kyunghyun Kim; Minji Park; Joong-Hyuk Min; Ingu Ryu; Mi-Ri Kang; Lan Joo Park
Water Resources Research | 2008
Kyunghyun Kim; Anita M. Thompson; Gianluca Botter