Kyusei Tsuno
Rice University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kyusei Tsuno.
Nature | 2013
Rajdeep Dasgupta; Ananya Mallik; Kyusei Tsuno; Anthony C. Withers; Greg Hirth; Marc M. Hirschmann
The onset of melting in the Earth’s upper mantle influences the thermal evolution of the planet, fluxes of key volatiles to the exosphere, and geochemical and geophysical properties of the mantle. Although carbonatitic melt could be stable 250 km or less beneath mid-oceanic ridges, owing to the small fraction (∼0.03 wt%) its effects on the mantle properties are unclear. Geophysical measurements, however, suggest that melts of greater volume may be present at ∼200 km (refs 3–5) but large melt fractions are thought to be restricted to shallower depths. Here we present experiments on carbonated peridotites over 2–5 GPa that constrain the location and the slope of the onset of silicate melting in the mantle. We find that the pressure–temperature slope of carbonated silicate melting is steeper than the solidus of volatile-free peridotite and that silicate melting of dry peridotite + CO2 beneath ridges commences at ∼180 km. Accounting for the effect of 50–200 p.p.m. H2O on freezing point depression, the onset of silicate melting for a sub-ridge mantle with ∼100 p.p.m. CO2 becomes as deep as ∼220–300 km. We suggest that, on a global scale, carbonated silicate melt generation at a redox front ∼250–200 km deep, with destabilization of metal and majorite in the upwelling mantle, explains the oceanic low-velocity zone and the electrical conductivity structure of the mantle. In locally oxidized domains, deeper carbonated silicate melt may contribute to the seismic X-discontinuity. Furthermore, our results, along with the electrical conductivity of molten carbonated peridotite and that of the oceanic upper mantle, suggest that mantle at depth is CO2-rich but H2O-poor. Finally, carbonated silicate melts restrict the stability of carbonatite in the Earth’s deep upper mantle, and the inventory of carbon, H2O and other highly incompatible elements at ridges becomes controlled by the flux of the former.
Earth and Planetary Science Letters | 2011
David C. Rubie; Daniel J. Frost; Ute Mann; Yuki Asahara; Francis Nimmo; Kyusei Tsuno; Philip Kegler; Astrid Holzheid; H. Palme
Contributions to Mineralogy and Petrology | 2011
Kyusei Tsuno; Rajdeep Dasgupta
Earth and Planetary Science Letters | 2012
Kyusei Tsuno; Rajdeep Dasgupta
Geophysical Research Letters | 2013
Kyusei Tsuno; Daniel J. Frost; David C. Rubie
Geochimica et Cosmochimica Acta | 2014
Shuo Ding; Rajdeep Dasgupta; Kyusei Tsuno
Geophysical Research Letters | 2012
Kyusei Tsuno; Rajdeep Dasgupta; L. R. Danielson; Kevin Righter
Physics of the Earth and Planetary Interiors | 2007
Kyusei Tsuno; Hidenori Terasaki
Earth and Planetary Science Letters | 2015
Yuan Li; Rajdeep Dasgupta; Kyusei Tsuno
Earth and Planetary Science Letters | 2015
Kyusei Tsuno; Rajdeep Dasgupta