Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where L. A. Del Negro is active.

Publication


Featured researches published by L. A. Del Negro.


Science | 1995

Emission Measurements of the Concorde Supersonic Aircraft in the Lower Stratosphere

D. W. Fahey; E. R. Keim; K. A. Boering; C. A. Brock; J. C. Wilson; Haflidi H. Jonsson; S. E. Anthony; T. F. Hanisco; Paul O. Wennberg; R. C. Miake-Lye; R. J. Salawitch; N. Louisnard; E. L. Woodbridge; Runsheng Gao; S. G. Donnelly; R. C. Wamsley; L. A. Del Negro; Susan Solomon; Bruce C. Daube; S. C. Wofsy; C. R. Webster; R. D. May; K. K. Kelly; M. Loewenstein; J. R. Podolske; K. R. Chan

Emission indices of reactive gases and particles were determined from measurements in the exhaust plume of a Concorde aircraft cruising at supersonic speeds in the stratosphere. Values for NOx (sum of NO and NO2) agree well with ground-based estimates. Measurements of NOx and HOx indicate a limited role for nitric acid in the plume. The large number of submicrometer particles measured implies efficient conversion of fuel sulfur to sulfuric acid in the engine or at emission. A new fleet of supersonic aircraft with similar particle emissions would significantly increase stratospheric aerosol surface areas and may increase ozone loss above that expected for NOx emissions alone.


Journal of Geophysical Research | 1999

Comparison of MkIV balloon and ER‐2 aircraft measurements of atmospheric trace gases

G. C. Toon; J.-F. Blavier; B. Sen; J. J. Margitan; C. R. Webster; Randy D. May; D. W. Fahey; R. S. Gao; L. A. Del Negro; M. H. Proffitt; J. W. Elkins; P. A. Romashkin; D. F. Hurst; S. J. Oltmans; Elliot Atlas; S. Schauffler; F. Flocke; T. P. Bui; R. M. Stimpfle; G. P. Bonne; P. B. Voss; R. C. Cohen

On May 8, 1997, vertical profiles of over 30 different gases were measured remotely in solar occultation by the Jet Propulsion Laboratory MkIV Interferometer during a balloon flight launched from Fairbanks, Alaska. These gases included H 2 O, N 2 O, CH 4 , CO, NO x , NO y , HCI, ClNO 3 , CCl 2 F 2 , CCl 3 F, CCl 4 , CHClF 2 , CClF 2 CCl 2 F, SF 6 , CH 3 Cl, and C 2 H 6 , all of which were also measured in situ by instruments on board the NASA ER-2 aircraft, which was making flights from Fairbanks during this same early May time period as part of the Photochemistry of Ozone Loss in the Arctic Region in Summer (POLARIS) experiment. A comparison of the gas volume mixing ratios in the upper troposphere and lower stratosphere reveals agreement better than 5% for most gases. The three significant exceptions to this are SF 6 and CCl 4 for which the remote measurements exceed the in situ observations by 15-20% at all altitudes, and H 2 O for which the remote measurements are up to 30% smaller than the in situ observations near the hygropause.


Journal of Geophysical Research | 2010

Biogenic emission measurement and inventories determination of biogenic emissions in the eastern United States and Texas and comparison with biogenic emission inventories

Carsten Warneke; J. A. de Gouw; L. A. Del Negro; J. Brioude; S. A. McKeen; Harald Stark; William C. Kuster; Paul D. Goldan; M. Trainer; F. C. Fehsenfeld; Christine Wiedinmyer; Alex Guenther; Armin Hansel; Armin Wisthaler; E. Atlas; John S. Holloway; T. B. Ryerson; J. Peischl; L. G. Huey; A. T. Case Hanks

During the NOAA Southern Oxidant Study 1999 (SOS1999), Texas Air Quality Study 2000 (TexAQS2000), International Consortium for Atmospheric Research on Transport and Transformation (ICARTT2004), and Texas Air Quality Study 2006 (TexAQS2006) campaigns, airborne measurements of isoprene and monoterpenes were made in the eastern United States and in Texas, and the results are used to evaluate the biogenic emission inventories BEIS3.12, BEIS3.13, MEGAN2, and WM2001. Two methods are used for the evaluation. First, the emissions are directly estimated from the ambient isoprene and monoterpene measurements assuming a well-mixed boundary layer and are compared with the emissions from the inventories extracted along the flight tracks. Second, BEIS3.12 is incorporated into the detailed transport model FLEXPART, which allows the isoprene and monoterpene mixing ratios to be calculated and compared to the measurements. The overall agreement for all inventories is within a factor of 2 and the two methods give consistent results. MEGAN2 is in most cases higher, and BEIS3.12 and BEIS3.13 lower than the emissions determined from the measurements. Regions with clear discrepancies are identified. For example, an isoprene hot spot to the northwest of Houston, Texas, was expected from BEIS3 but not observed in the measurements. Interannual differences in emissions of about a factor of 2 were observed in Texas between 2000 and 2006. Copyright 2010 by the American Geophysical Union.


Geophysical Research Letters | 1999

A comparison of observations and model simulations of NOx/NOy in the lower stratosphere

R. S. Gao; D. W. Fahey; L. A. Del Negro; S. G. Donnelly; E. R. Keim; J. A. Neuman; E. Teverovskaia; Paul O. Wennberg; T. F. Hanisco; E. J. Lanzendorf; M. H. Proffitt; J. J. Margitan; J. C. Wilson; James W. Elkins; R. M. Stimpfle; R. C. Cohen; C. T. McElroy; T. P. Bui; R. J. Salawitch; Steven S. Brown; A. R. Ravishankara; Robert W. Portmann; Malcolm K. W. Ko; Debra K. Weisenstein; Paul A. Newman

Extensive airborne measurements of the reactive nitrogen reservoir (NO_(y)) and its component nitric oxide (NO) have been made in the lower stratosphere. Box model simulations that are constrained by observations of radical and long-lived species and which include heterogeneous chemistry systematically underpredict the NO_x (= NO + NO_2) to NO_y ratio. The model agreement is substantially improved if newly measured rate coefficients for the OH + NO_2 and OH + HNO_3 reactions are used. When included in 2-D models, the new rate coefficients significantly increase the calculated ozone loss due to NO_x and modestly change the calculated ozone abundances in the lower stratosphere. Ozone changes associated with the emissions of a fleet of supersonic aircraft are also altered.


Journal of Geophysical Research | 1997

Partitioning of the Reactive Nitrogen Reservoir in the lower stratosphere of the southern hemisphere: Observations and modeling

R. S. Gao; D. W. Fahey; R. J. Salawitch; Steven A. Lloyd; D. E. Anderson; R. DeMajistre; C. T. McElroy; E. L. Woodbridge; R. C. Wamsley; Stephen George Donnelly; L. A. Del Negro; M. H. Proffitt; R. M. Stimpfle; D. W. Kohn; S. R. Kawa; Leslie R. Lait; M. Loewenstein; J. R. Podolske; E. R. Keim; James E. Dye; J. C. Wilson; K. R. Chan

Measurements of nitric oxide (NO), nitrogen dioxide (NO2), and total reactive nitrogen (NOy = NO + NO2 + NO3 + HNO3 + ClONO2 + 2N2O5 + …) were made during austral fall, winter, and spring 1994 as part of the NASA Airborne Southern Hemisphere Ozone Experiment/Measurements for Assessing the Effects of Stratospheric Aircraft mission. Comparisons between measured NO2 values and those calculated using a steady state (SS) approximation are presented for flights at mid and high latitudes. The SS results agree with the measurements to within 8%, suggesting that the kinetic rate coefficients and calculated NO2 photolysis rate used in the SS approximation are reasonably accurate for conditions in the lower stratosphere. However, NO2 values observed in the Concorde exhaust plume were significantly less than SS values. Calculated NO2 photolysis rates showed good agreement with values inferred from solar flux measurements, indicating a strong self-consistency in our understanding of UV radiation transmission in the lower stratosphere. Model comparisons using a full diurnal, photochemical steady state model also show good agreement with the NO and NO2 measurements, suggesting that the reactions affecting the partitioning of the NOy reservoir are well understood in the lower stratosphere.


Journal of Geophysical Research | 1997

Measurements of the NO y ‐N2O correlation in the lower stratosphere: Latitudinal and seasonal changes and model comparisons

E. R. Keim; M. Loewenstein; J. R. Podolske; D. W. Fahey; R. S. Gao; E. L. Woodbridge; R. C. Wamsley; Stephen George Donnelly; L. A. Del Negro; Cynthia D. Nevison; Stanley C. Solomon; Karen H. Rosenlof; C. J. Scott; Malcolm K. W. Ko; Debra K. Weisenstein; K. R. Chan

The tracer species nitrous oxide, N2O, and the reactive nitrogen reservoir, NOy, were measured in situ using instrumentation carried aboard the NASA ER-2 high altitude aircraft as part of the NASA Airborne Southern Hemisphere Ozone Expedition/Measurements for Assessing the Effects of Stratospheric Aircraft (ASHOE/MAESA) and Stratospheric Tracers of Atmospheric Transport (STRAT) missions. Measurements were made throughout the latitude range of 70°S to 60°N over the time period of March to October 1994 and October 1995 to January 1996, which includes the period when the Antarctic polar vortex is most intense. The correlation plots of NOy with N2O reveal compact, near-linear curves throughout data obtained in the lower stratosphere (50 mbar to 200 mbar). The average slope of the correlation, ΔNOy/ΔN2O, in the southern hemisphere (SH) exhibited a much larger seasonal variation during this time period than was observed in the northern hemisphere (NH). Between March and October in the potential temperature range of 400 K to 525 K, the correlation slope in the SH midlatitudes increased by 28%. A smaller but still positive increase in the correlation slope was observed for higher-latitude data obtained within or near the edge of the SH polar vortex. At NH midlatitudes the correlation slope did not significantly change between March and October, while between October and January the slope increased by +7%. The larger SH midlatitude increase is consistent with ongoing descent throughout the winter and spring and also suggests that denitrification, the irreversible loss of HNO3 through sedimentation of cloud particles, is not a significant term (<10–15%) in the budget of NOy at SH midlatitudes during the wintertime. A secular increase in the correlation slope is ruled out by comparison with SH data obtained during the 1987 Airborne Antarctic Ozone Expedition (AAOE) aircraft campaign. These results suggest that a seasonal cycle exists in the correlation slope for both hemispheres, with the SH correlation slope returning to the April value during the SH spring and summer. Changes in stratospheric circulation also probably play a role in both the SH and the NH correlation slope seasonal cycles. Comparisons with two-dimensional model results suggest that the slope decreases when the denitrified Antarctic vortex is diluted into midlatitudes upon vortex breakup in the spring and that through the descent of stratospheric air, the slope recovers during the following fall/winter period.


Journal of Geophysical Research | 1997

Evaluating the role of NAT, NAD, and liquid H2SO4/H2O/HNO3 solutions in Antarctic polar stratospheric cloud aerosol: Observations and implications

L. A. Del Negro; D. W. Fahey; Stephen George Donnelly; R. S. Gao; E. R. Keim; R. C. Wamsley; E. L. Woodbridge; James E. Dye; Darrel Baumgardner; B. W. Gandrud; J. C. Wilson; Haflidi H. Jonsson; M. Loewenstein; J. R. Podolske; C. R. Webster; R. D. May; Douglas R. Worsnop; Azadeh Tabazadeh; Margaret A. Tolbert; K. K. Kelly; K. R. Chan

Airborne measurements of total reactive nitrogen (NOy) and polar stratospheric cloud (PSC) aerosol particles were made in the Antarctic (68°S) as part of the NASA Airborne Southern Hemisphere Ozone Experiment/Measurements for Assessing the Effects of Stratospheric Aircraft (ASHOE/MAES A) campaign in late July 1994. As found in both polar regions during previous studies, substantial PSC aerosol volume containing NOy was observed at temperatures above the frost point, confirming the presence of particles other than water ice. The composition of the aerosol particles is evaluated using equilibrium expressions for nitric acid trihydrate (NAT), nitric acid dihydrate (NAD), and the supercooled ternary solution (STS) composed of nitric acid (HNO3), sulfuric acid (H2SO4), and water (H2O). The equilibrium abundance of condensed HNO3 is calculated for each phase and compared to estimates made using observations of aerosol volume and NOy. The best agreement is found for STS composition, using criteria related to the onset and abundance of aerosol volume along the flight track. Throughout the PSC region, a comparison of the number of particles between 0.4 and 4.0 μm diameter with the number of available nuclei indicates that a significant fraction of the background aerosol number participates in PSC growth. Modeled STS size distributions at temperatures below 191 K compare favorably with measured size distributions of PSC aerosol. Calculations of the heterogeneous loss of chlorine nitrate (ClONO2) show that the reactivity of the observed PSC surface area is 30 to 300% greater with STS than with NAT composition for temperatures less than 195 K. The total volume of STS PSCs is shown to be more sensitive than NAT to increases in H2O, HNO3, and H2SO4 from supersonic aircraft fleet emissions. Using the current observations and perturbations predicted by the current aircraft assessments, an increase of 50 to 260% in STS aerosol volume is expected at the lowest observed temperatures (190 to 192 K), along with an extension of significant PSC activity to regions ∼0.7 K higher in temperature. These results improve our understanding of PSC aerosol formation in polar regions while strengthening the requirement to include STS aerosols in studies of polar ozone loss and the effects of aircraft emissions.


Geophysical Research Letters | 1996

In situ observations of NOy, O3, and the NOy/O3 ratio in the lower stratosphere

D. W. Fahey; S. G. Donnelly; E. R. Keim; Runsheng Gao; R. C. Wamsley; L. A. Del Negro; E. L. Woodbridge; M. H. Proffitt; Karen H. Rosenlof; Malcolm K. W. Ko; Debra K. Weisenstein; Courtney J. Scott; Cynthia D. Nevison; Stanley C. Solomon; K. R. Chan

Extensive in situ measurements of reactive nitrogen (NO y ) and ozone (O 3 ) were made in the lower stratosphere over a broad latitude range (60°N-70°S) during two different seasons (March and October) in 1994. Both NO y and O 3 mixing ratios show a strong latitude dependence, with values increasing toward the poles. The NO y /O 3 ratio reveals a high-gradient region near the tropics that is not well-represented in standard 2-D photochemical transport models. Improving the representation by changing the horizontal eddy-diffusion coefficients near the tropics has important implications for the predicted impacts of aircraft emissions on stratospheric O 3 .


Journal of Geophysical Research | 1999

The Coupling of ClONO2, ClO, and NO2 in the Lower Stratosphere From in Situ Observations Using the NASA ER-2 Aircraft

R. M. Stimpfle; R. C. Cohen; G. P. Bonne; P. B. Voss; Katherine K. Perkins; L. C. Koch; J. G. Anderson; R. J. Salawitch; Steven A. Lloyd; R. S. Gao; L. A. Del Negro; E. R. Keim; T. P. Bui

The first in situ measurements of ClONO 2 in the lower stratosphere, acquired using the NASA ER-2 aircraft during the Polar Ozone Loss in the Arctic Region in Summer (POLARIS) mission, are combined with simultaneous measurements of ClO, NO 2 , temperature, pressure, and the calculated photolysis rate coefficient (J ClONO2 ) to examine the balance between production and loss of ClONO 2 . The observations demonstrate that the ClONO 2 photochemical steady state approximation, [ClONO 2 ] PSS = k × [ClO] × [NO 2 ] / J ClONO2 , is in good agreement with the direct measurement, [ClONO 2 ] MEAS . For the bulk of the data (80%), where T > 220 K and latitudes > 45°N, [ClONO 2 ] PSS = 1.15±0.36 (1σ) × [ClONO 2 ] MEAS , while for T 300 nm. These measurements confirm the mechanism by which active nitrogen (NO x = NO + NO 2 ) controls the abundance of active chlorine (Cl x = ClO + Cl) in the stratosphere.


Journal of Geophysical Research | 1999

Comparison of modeled and observed values of NO2 and JNO2 during the Photochemistry of Ozone Loss in the Arctic Region in Summer (POLARIS) mission

L. A. Del Negro; D. W. Fahey; R. S. Gao; Stephen George Donnelly; E. R. Keim; J. A. Neuman; R. C. Cohen; Katherine K. Perkins; L. C. Koch; R. J. Salawitch; Steven A. Lloyd; M. H. Proffitt; J. J. Margitan; R. M. Stimpfle; G. P. Bonne; P. B. Voss; Paul O. Wennberg; C. T. McElroy; William H. Swartz; T. L. Kusterer; D. E. Anderson; Leslie R. Lait; T. P. Bui

Stratospheric measurements of NO, NO_(2), O_(3), ClO, and HO_(2) were made during spring, early summer, and late summer in the Arctic region during 1997 as part of the Photochemistry of Ozone Loss in the Arctic Region in Summer (POLARIS) field campaign. In the sunlit atmosphere, NO_(2) and NO are in steady state through NO2 photolysis and reactions involving O_(3), ClO, BrO, and HO_(2). By combining observations of O_(3), ClO, and HO_(2), observed and modeled values of the NO_(2) photolysis rate coefficient (JNO_(2)), and model estimates of BrO, several comparisons are made between steady state and measured values of both NO_(2) and JNO_(2). An apparent seasonal dependence in discrepancies between calculated and measured values was found; however, a source for this dependence could not be identified. Overall, the mean linear fits in the various comparisons show agreement within 19%, well within the combined uncertainties (±50 to 70%). These results suggest that photochemistry controlling the NO_(2)/NO abundance ratio is well represented throughout much of the sunlit lower stratosphere. A reduction in the uncertainty of laboratory determinations of the rate coefficient of NO + O_(3) → NO_(2) + O_(2) would aid future analyses of these or similar atmospheric observations.

Collaboration


Dive into the L. A. Del Negro's collaboration.

Top Co-Authors

Avatar

D. W. Fahey

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. H. Proffitt

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul O. Wennberg

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

R. C. Cohen

University of California

View shared research outputs
Top Co-Authors

Avatar

R. C. Wamsley

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge