Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where L. A. Medeiros is active.

Publication


Featured researches published by L. A. Medeiros.


Journal of Mathematical Analysis and Applications | 1979

On a New Class of Nonlinear Wave Equations

L. A. Medeiros

Abstract In this paper we prove the existence and uniqueness of regular solutions for the Cauchy problem for the evolution equation u″ + A 2 u + (α + M(¦A 1 2 u¦ 2 ) Au = 0 , suggested by the study of beams and plates. We represent by A a linear operator of a Hilbert space H with norm ∥, α is a real number, and M ( λ ) > 0 a real function, for λ ⩾ 0.


Siam Journal on Mathematical Analysis | 1977

Existence and Uniqueness for Periodic Solutions of the Benjamin–Bona–Mahony Equation

L. A. Medeiros; G. Perla Menzala

We consider the problem


Journal of Mathematical Analysis and Applications | 1977

Weak solutions for a nonlinear dispersive equation

L. A. Medeiros; M. Milla Miranda

u_t - u_{xx} + uu_x = 0


Annali di Matematica Pura ed Applicata | 1986

Weak solutions for a system of nonlinear Klein-Gordon equations

L. A. Medeiros; M. Milla Miranda

in


Proceedings of the Royal Society of Edinburgh Section A: Mathematics | 1986

Remarks on a non-well posed problem

L. A. Medeiros

- \infty < x


Applicable Analysis | 2007

On the Navier–Stokes equations with variable viscosity in a noncylindrical domain

G. M. de Araújo; M. Milla Miranda; L. A. Medeiros

,


Acta Mathematica Hungarica | 1988

On a mixed problem for a class of nonlinear Klein-Gordon equations

L. A. Medeiros; G. Perla Menzala

t < \infty


Boletim Da Sociedade Brasileira De Matematica | 1978

On global solutions of a nonlinear dispersive equation of Sobolev type

L. A. Medeiros; G. Perla Menzala

with initial data at


Archive | 1977

Iniciação ãs equações diferenciais parciais não lineares

L. A. Medeiros; Carlos B. Vasconcellos; Lucia B. Vasconcellos; Neyde F. M. Ribeiro

t = 0


Archive | 1975

A Sobolev type equation

G. Perla Menzala; L. A. Medeiros

which is 1-periodic and the boundary condition

Collaboration


Dive into the L. A. Medeiros's collaboration.

Top Co-Authors

Avatar

M. Milla Miranda

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

G. Perla Menzala

Federal University of Rio de Janeiro

View shared research outputs
Researchain Logo
Decentralizing Knowledge