Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where L. Affer is active.

Publication


Featured researches published by L. Affer.


The Astrophysical Journal | 2015

THE MASS OF KEPLER-93B AND THE COMPOSITION OF TERRESTRIAL PLANETS *

Courtney D. Dressing; David Charbonneau; X. Dumusque; S. Gettel; F. Pepe; Andrew Collier Cameron; David W. Latham; Emilio Molinari; S. Udry; L. Affer; A. S. Bonomo; Lars A. Buchhave; Rosario Cosentino; P. Figueira; Aldo F. M. Fiorenzano; A. Harutyunyan; R. D. Haywood; John Asher Johnson; Mercedes Lopez-Morales; Christophe Lovis; Luca Malavolta; Michel Mayor; Giusi Micela; Fatemeh Motalebi; Valerio Nascimbeni; David F. Phillips; Giampaolo Piotto; Don Pollacco; D. Queloz; Ken Rice

Kepler-93b is a 1.478 ± 0.019 R⊕ planet with a 4.7 day period around a bright (V = 10.2), astroseismically characterized host star with a mass of 0.911 ± 0.033 Mand a radius of 0.919 ± 0.011 R� . Based on 86 radial velocity observations obtained with the HARPS-N spectrograph on the Telescopio Nazionale Galileo and 32 archival Keck/HIRES observations, we present a precise mass estimate of 4.02 ± 0.68 M⊕. The corresponding high density of 6.88 ± 1.18 g cm −3 is consistent with a rocky composition of primarily iron and magnesium silicate. We compare Kepler-93b to other dense planets with well-constrained parameters and find that between 1 and 6 M⊕, all dense planets including the Earth and Venus are well-described by the same fixed ratio of iron to magnesium silicate. There are as of yet no examples of such planets with masses > 6 M⊕. All known planets in this mass regime have lower densities requiring significant fractions of volatiles or H/He gas. We also constrain the mass and period of the outer companion in the Kepler-93 system from the long-term radial velocity trend and archival adaptive optics images. As the sample of dense planets with well-constrained masses and radii continues to grow, we will be able to test whether the fixed compositional model found for the seven dense planets considered in this paper extends to the full population of 1-6 M⊕ planets.


Astronomy and Astrophysics | 2013

The GAPS programme with HARPS-N at TNG - I. Observations of the Rossiter-McLaughlin effect and characterisation of the transiting system Qatar-1

E. Covino; M. Esposito; Mauro Barbieri; L. Mancini; Valerio Nascimbeni; R. U. Claudi; S. Desidera; R. Gratton; A. Lanza; A. Sozzetti; K. Biazzo; L. Affer; D. Gandolfi; Ulisse Munari; I. Pagano; A. S. Bonomo; A. Collier Cameron; G. Hébrard; A. Maggio; S. Messina; G. Micela; Emilio Molinari; F. Pepe; Giampaolo Piotto; Ignasi Ribas; N. C. Santos; J. Southworth; Evgenya L. Shkolnik; A. H. M. J. Triaud; L. R. Bedin

Context. Our understanding of the formation and evolution of planetary systems is still fragmentary because most of the current data provide limited information about the orbital structure and dynamics of these systems. The knowledge of the orbital properties for a variety of systems and at di erent ages yields information on planet migration and on star-planet tidal interaction mechanisms. Aims. In this context, a long-term, multi-purpose, observational programme has started with HARPS-N at TNG and aims to characterise the global architectural properties of exoplanetary systems. The goal of this first paper is to fully characterise the orbital properties of the transiting system Qatar-1 as well as the physical properties of the star and the planet. Methods. We exploit HARPS-N high-precision radial velocity measurements obtained during a transit to measure the Rossiter-McLaughlin e ect in the Qatar-1 system, and out-of-transit measurements to redetermine the spectroscopic orbit. New photometric-transit light-curves were analysed and a spectroscopic characterisation of the host star atmospheric parameters was performed based on various methods (line equivalent width ratios, spectral synthesis, spectral energy distribution). Results. We achieved a significant improvement in the accuracy of the orbital parameters and derived the spin-orbit alignment of the system; this information, combined with the spectroscopic determination of the host star properties (rotation, Te , logg, metallicity), allows us to derive the fundamental physical parameters for star and planet (masses and radii). The orbital solution for the Qatar-1 system is consistent with a circular orbit and the system presents a sky-projected obliquity of = 8:4 7:1 deg. The planet, with a mass of 1:33 0:05 MJ, is found to be significantly more massive than previously reported. The host star is confirmed to be metal-rich ([Fe/H] = 0:20 0:10) and slowly rotating (v sinI = 1:7 0:3 km s 1 ), though moderately active, as indicated by the strong chromospheric emission in the Caii H&K line cores (logR 0 4:60). Conclusions. We find that the system is well aligned and fits well within the general versus Te trend. We can definitely rule out any significant orbital eccentricity. The evolutionary status of the system is inferred based on gyrochronology, and the present orbital configuration and timescale for orbital decay are discussed in terms of star-planet tidal interactions.


Astronomy and Astrophysics | 2015

The HARPS-N Rocky Planet Search. I. HD 219134 b: A transiting rocky planet in a multi-planet system at 6.5 pc from the Sun

Fatemeh Motalebi; S. Udry; Michaël Gillon; C. Lovis; D. Ségransan; Lars A. Buchhave; Brice-Olivier Demory; Luca Malavolta; Courtney D. Dressing; Dimitar D. Sasselov; Ken Rice; D. Charbonneau; A. Collier Cameron; D. W. Latham; Emilio Molinari; F. Pepe; L. Affer; A. S. Bonomo; Rosario Cosentino; X. Dumusque; P. Figueira; Aldo F. M. Fiorenzano; S. Gettel; A. Harutyunyan; R. D. Haywood; John Asher Johnson; Eric D. Lopez; Mercedes Lopez-Morales; M. Mayor; G. Micela

We present here the detection of a system of four low-mass planets around the bright (V=5.5) and close-by (6.5 pc) star HD219134. This is the first result of the Rocky Planet Search program with HARPS-N on the TNG in La Palma. The inner planet orbits the star in 3.0937 +/-0.0004 days, on a quasi-circular orbit with a semi-major axis of 0.0382 +/- 0.0003 AU. Spitzer observations allowed us to detect the transit of the planet in front of the star making HD219134b the nearest known transiting planet to date. From the amplitude of the radial-velocity variation (2.33 +/- 0.24 m/s) and observed depth of the transit (359 +/- 38 ppm), the planet mass and radius are estimated to be 4.46 +/- 0.47 M_{\oplus} and 1.606 +/- 0.086 R_{\oplus} leading to a mean density of 5.89 +/- 1.17 g/cc, suggesting a rocky composition. One additional planet with minimum mass of 2.67 +/- 0.59 M_{\oplus} moves on a close-in, quasi-circular orbit with a period of 6.765 +/- 0.005 days. The third planet in the system has a period of 46.78 +/- 0.16 days and a minimum mass of 8.7 +/- 1.1 M{\oplus}, at 0.234 +/- 0.002 AU from the star. Its eccentricity is 0.32 +/- 0.14. The period of this planet is close to the rotational period of the star estimated from variations of activity indicators (42.3 +/- 0.1 days). The planetary origin of the signal is, however, the preferred solution as no indication of variation at the corresponding frequency is observed for activity-sensitive parameters. Finally, a fourth additional longer-period planet of mass of 62 +/- 6 M_{\oplus} orbits the star in 1190 days, on an eccentric orbit (e=0.27 +/- 0.11) at a distance of 2.14 +/- 0.27 AU.


Monthly Notices of the Royal Astronomical Society | 2013

Rotation in NGC 2264: a study based on CoRoT photometric observations

L. Affer; G. Micela; F. Favata; E. Flaccomio; J. Bouvier

Rotation is one of the key stellar parameters which undergo substantial evolution during the stellar lifetime, in particular during the early stages. Stellar rotational periods can be determined on the basis of the periodic modulation of starlight produced by non-uniformities on the surface of the stars, due to manifestation of stellar activity. We present the results of an extensive search for rotational periods among NGC 2264 cluster members, based on photometric monitoring using the CoRoT satellite, with a particular attention to the distribution of classical and weak-line T-Tauri stars. NGC 2264 is one of the nearest and best studied star forming region in the solar neighbourhood, with an estimated age of 3 Myr, and is the object of a recent simultaneous multiband campaign including a new CoRoT observation with the aim to assess the physical origin of the observed variability. We find that the rotational distributions of classical and weak-line T-Tauri star are different, suggesting a difference in the rotational properties of accreting and non-accreting stars.


Astronomy and Astrophysics | 2015

Stellar parameters of early M dwarfs from ratios of spectral features at optical wavelengths

J. Maldonado; L. Affer; G. Micela; G. Scandariato; M. Damasso; B. Stelzer; Mauro Barbieri; L. R. Bedin; K. Biazzo; A. Bignamini; F. Borsa; R. U. Claudi; E. Covino; S. Desidera; Massimiliano Esposito; R. Gratton; J. I. González Hernández; A. Lanza; A. Maggio; Emilio Molinari; I. Pagano; I. Pillitteri; Giampaolo Piotto; E. Poretti; L. Prisinzano; R. Rebolo; Ignasi Ribas; Evgenya L. Shkolnik; J. Southworth; A. Sozzetti

(Abridged) Low-mass stars have been recognised as promising targets in the search for rocky, small planets with the potential of supporting life. Doppler search programmes using high-resolution spectrographs like HARPS or HARPS-N are providing huge quantities of optical spectra of M dwarfs. We aim to calibrate empirical relationships to determine stellar parameters for early M dwarfs (spectral types M0-M4.5) using the same spectra that are used for the radial velocity determinations. Our methodology consists in the use of ratios of pseudo equivalent widths of spectral features as a temperature diagnostic. Stars with effective temperatures obtained from interferometric estimates of their radii are used as calibrators. Empirical calibrations for the spectral type are also provided. Combinations of features and ratios of features are used to derive calibrations for the stellar metallicity. Our methods are then applied to a large sample of M dwarfs that are being observed in the framework of the HARPS search for extrasolar planets.The derived temperatures and metallicities are used together with photometric estimates of mass, radius, and surface gravity to calibrate empirical relationships for these parameters. A total of 112 temperature sensitive ratios have been calibrated over the range 3100-3950 K, providing Teff values with typical uncertainties of the order of 70 K. Eighty-two ratios of pseudo equivalent widths of features were calibrated to derive spectral types. Regarding stellar metallicity, 696 combinations of pseudo equivalent widths of individual features and temperature-sensitive ratios have been calibrated, over the metallicity range from -0.54 to +0.24 dex, with estimated uncertainties in the range of 0.07-0.10 dex. We provide our own empirical calibrations for stellar mass, radius, and surface gravity.


Astronomy and Astrophysics | 2016

The GAPS programme with HARPS-N at TNG - XI. Pr 0211 in M 44: the first multi-planet system in an open cluster

Luca Malavolta; Valerio Nascimbeni; Giampaolo Piotto; Samuel N. Quinn; Luca Borsato; Valentina Granata; A. S. Bonomo; Francesco Marzari; L. R. Bedin; M. Rainer; S. Desidera; A. Lanza; E. Poretti; A. Sozzetti; R. J. White; D. W. Latham; Andrea Cunial; Mattia Libralato; Domenico Nardiello; Caterina Boccato; R. U. Claudi; R. Cosentino; E. Covino; R. Gratton; A. Maggio; G. Micela; E. Molinari; I. Pagano; Riccardo Smareglia; L. Affer

Open cluster (OC) stars share the same age and metallicity, and, in general, their age and mass can be estimated with higher precision than for field stars. For this reason, OCs are considered an important laboratory to study the relation between the physical properties of the planets and those of their host stars, and the evolution of planetary systems. We started an observational campaign within the GAPS collaboration to search for and characterize planets in OCs We monitored the Praesepe member Pr0211 to improve the eccentricity of the Hot-Jupiter (HJ) already known to orbit this star and search for additional planets. An eccentric orbit for the HJ would support a planet-planet scattering process after its formation. From 2012 to 2015, we collected 70 radial velocity (RV) measurements with HARPS-N and 36 with TRES of Pr0211. Simultaneous photometric observations were carried out with the robotic STELLA telescope in order to characterize the stellar activity. We discovered a long-term trend in the RV residuals that we show to be due to the presence of a second, massive, outer planet. Orbital parameters for the two planets are derived by simultaneously fitting RVs and photometric light curves, with the activity signal modelled as a series of sinusoids at the rotational period of the star and its harmonics. We confirm that Pr0211b has a nearly circular orbit (


Astronomy and Astrophysics | 2013

The GAPS programme with HARPS-N at TNG

S. Desidera; A. Sozzetti; A. S. Bonomo; R. Gratton; E. Poretti; R. U. Claudi; D. W. Latham; L. Affer; Rosario Cosentino; M. Damasso; M. Esposito; P. Giacobbe; Luca Malavolta; Valerio Nascimbeni; Giampaolo Piotto; M. Rainer; M. Scardia; V. S. Schmid; A. Lanza; G. Micela; I. Pagano; L. R. Bedin; K. Biazzo; F. Borsa; Elena Carolo; E. Covino; F. Faedi; G. Hébrard; C. Lovis; A. Maggio

e = 0.02 \pm 0.01


Astronomy and Astrophysics | 2015

The GAPS programme with HARPS-N at TNG X. Differential abundances in the XO-2 planet-hosting binary ,

K. Biazzo; R. Gratton; S. Desidera; Sara Lucatello; A. Sozzetti; A. S. Bonomo; M. Damasso; Davide Gandolfi; L. Affer; Caterina Boccato; F. Borsa; R. U. Claudi; Rosario Cosentino; E. Covino; C. Knapic; A. Lanza; J. Maldonado; Francesco Marzari; G. Micela; Paolo Molaro; I. Pagano; M. Pedani; I. Pillitteri; Giampaolo Piotto; E. Poretti; M. Rainer; N. C. Santos; G. Scandariato; R. Zanmar Sanchez

), with an improvement of a factor two with respect to the previous determination of its eccentricity, and estimate that Pr0211c has a mass


Astronomy and Astrophysics | 2015

The GAPS programme with HARPS-N at TNG - V. A comprehensive analysis of the XO-2 stellar and planetary systems

M. Damasso; K. Biazzo; A. S. Bonomo; S. Desidera; A. Lanza; Valerio Nascimbeni; M. Esposito; G. Scandariato; A. Sozzetti; Rosario Cosentino; R. Gratton; Luca Malavolta; M. Rainer; Davide Gandolfi; E. Poretti; R. Zanmar Sanchez; Ignasi Ribas; N. C. Santos; L. Affer; G. Andreuzzi; Mauro Barbieri; L. R. Bedin; Serena Benatti; A. Bernagozzi; E. Bertolini; Mariangela Bonavita; F. Borsa; Luca Borsato; W. Boschin; P. Calcidese

M_p\sin i = 7.9 \pm 0.2 M_J


Astronomy and Astrophysics | 2015

The GAPS programme with HARPS-N at TNG VII. Putting exoplanets in the stellar context: magnetic activity and asteroseismology of τ Bootis A ,

F. Borsa; G. Scandariato; M. Rainer; A. Bignamini; A. Maggio; E. Poretti; A. Lanza; M. Di Mauro; Serena Benatti; K. Biazzo; A. S. Bonomo; M. Damasso; M. Esposito; R. Gratton; L. Affer; Mauro Barbieri; Caterina Boccato; R. U. Claudi; Rosario Cosentino; E. Covino; S. Desidera; Aldo F. M. Fiorenzano; Davide Gandolfi; A. Harutyunyan; J. Maldonado; G. Micela; Paolo Molaro; Emilio Molinari; I. Pagano; I. Pillitteri

, a period

Collaboration


Dive into the L. Affer's collaboration.

Researchain Logo
Decentralizing Knowledge