Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where L. Alex Gaither is active.

Publication


Featured researches published by L. Alex Gaither.


Journal of Virology | 2009

Class III Phosphatidylinositol 4-Kinase Alpha and Beta Are Novel Host Factor Regulators of Hepatitis C Virus Replication

Jason Borawski; Philip Troke; Xiaoling Puyang; Veronica Gibaja; ShanChaun Zhao; Craig Mickanin; Juliet Leighton-Davies; C. Wilson; Vic E. Myer; Ivan Cornella-Taracido; Jeremy Baryza; John A. Tallarico; Gerard Joberty; Marcus Bantscheff; Markus Schirle; Tewis Bouwmeester; Joanna E. Mathy; Kai Lin; Teresa Compton; Mark Labow; Brigitte Wiedmann; L. Alex Gaither

ABSTRACT Host factor pathways are known to be essential for hepatitis C virus (HCV) infection and replication in human liver cells. To search for novel host factor proteins required for HCV replication, we screened a subgenomic genotype 1b replicon cell line (Luc-1b) with a kinome and druggable collection of 20,779 siRNAs. We identified and validated several enzymes required for HCV replication, including class III phosphatidylinositol 4-kinases (PI4KA and PI4KB), carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD), and mevalonate (diphospho) decarboxylase. Knockdown of PI4KA could inhibit the replication and/or HCV RNA levels of the two subgenomic genotype 1b clones (SG-1b and Luc-1b), two subgenomic genotype 1a clones (SG-1a and Luc-1a), JFH-1 genotype 2a infectious virus (JFH1-2a), and the genomic genotype 1a (FL-1a) replicon. In contrast, PI4KB knockdown inhibited replication and/or HCV RNA levels of Luc-1b, SG-1b, and Luc-1a replicons. The small molecule inhibitor, PIK93, was found to block subgenomic genotype 1b (Luc-1b), subgenomic genotype 1a (Luc-1a), and genomic genotype 2a (JFH1-2a) infectious virus replication in the nanomolar range. PIK93 was characterized by using quantitative chemical proteomics and in vitro biochemical assays to demonstrate PIK93 is a bone fide PI4KA and PI4KB inhibitor. Our data demonstrate that genetic or pharmacological modulation of PI4KA and PI4KB inhibits multiple genotypes of HCV and represents a novel druggable class of therapeutic targets for HCV infection.


Cancer Discovery | 2012

FGFR Genetic Alterations Predict for Sensitivity to NVP-BGJ398, a Selective Pan-FGFR Inhibitor

Vito Guagnano; Audrey Kauffmann; Simon Wöhrle; Christelle Stamm; Moriko Ito; Louise Barys; Astrid Pornon; Yao Yao; Fang Li; Yun Zhang; Zhi Chen; Christopher J. Wilson; Vincent Bordas; Mickaël Le Douget; L. Alex Gaither; Jason Borawski; John E. Monahan; Kavitha Venkatesan; Thomas Brümmendorf; David Thomas; Carlos Garcia-Echeverria; Francesco Hofmann; William R. Sellers; Diana Graus-Porta

UNLABELLED Patient stratification biomarkers that enable the translation of cancer genetic knowledge into clinical use are essential for the successful and rapid development of emerging targeted anticancer therapeutics. Here, we describe the identification of patient stratification biomarkers for NVP-BGJ398, a novel and selective fibroblast growth factor receptor (FGFR) inhibitor. By intersecting genome-wide gene expression and genomic alteration data with cell line-sensitivity data across an annotated collection of cancer cell lines called the Cancer Cell Line Encyclopedia, we show that genetic alterations for FGFR family members predict for sensitivity to NVP-BGJ398. For the first time, we report oncogenic FGFR1 amplification in osteosarcoma as a potential patient selection biomarker. Furthermore, we show that cancer cell lines harboring FGF19 copy number gain at the 11q13 amplicon are sensitive to NVP-BGJ398 only when concomitant expression of β-klotho occurs. Thus, our findings provide the rationale for the clinical development of FGFR inhibitors in selected patients with cancer harboring tumors with the identified predictors of sensitivity. SIGNIFICANCE The success of a personalized medicine approach using targeted therapies ultimately depends on being able to identify the patients who will benefit the most from any given drug. To this end, we have integrated the molecular profiles for more than 500 cancer cell lines with sensitivity data for the novel anticancer drug NVP-BGJ398 and showed that FGFR genetic alterations are the most significant predictors for sensitivity. This work has ultimately endorsed the incorporation of specific patient selection biomakers in the clinical trials for NVP-BGJ398.


Virology | 2009

Cholesterol biosynthesis modulation regulates dengue viral replication

Christopher Rothwell; Aude LeBreton; Chuan Young Ng; Joanne Y H Lim; Wei Liu; Subhash G. Vasudevan; Mark Labow; Feng Gu; L. Alex Gaither

We performed a focused siRNA screen in an A549 dengue type 2 New Guinea C subgenomic replicon cell line (Rluc-replicon) that contains a Renilla luciferase cassette. We found that siRNA mediated knock down of mevalonate diphospho decarboxylase (MVD) inhibited viral replication of the Rluc-replicon and DEN-2 NGC live virus replication in A549 cells. When the Rluc-replicon A459 cells were grown in delipidated media the replicon expression was suppressed and MVD knock down could further sensitize Renilla expression. Hymeglusin and zaragozic acid A could inhibit DEN-2 NGC live virus replication in K562 cells, while lovastatin could inhibit DEN-2 NGC live virus replication in human peripheral blood mononuclear cells. Renilla expression could be rescued in fluvastatin treated A549 Rluc-replicon cells after the addition of mevalonate, and partially restored with geranylgeranyl pyrophosphate, or farnesyl pyrophosphate. Our data suggest genetic and pharmacological modulation of cholesterol biosynthesis can regulate dengue virus replication.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Calcium-activated chloride channel ANO1 promotes breast cancer progression by activating EGFR and CAMK signaling

Adrian Britschgi; Anke Bill; Heike Brinkhaus; Christopher Rothwell; Ieuan Clay; Stephan Duss; Michael Rebhan; Pichai Raman; Chantale T. Guy; Kristie Wetzel; Elizabeth George; M. Oana Popa; Sarah Lilley; Hedaythul Choudhury; Martin Gosling; Louis Wang; Stephanie Fitzgerald; Jason Borawski; Jonathan Baffoe; Mark Labow; L. Alex Gaither; Mohamed Bentires-Alj

The calcium-activated chloride channel anoctamin 1 (ANO1) is located within the 11q13 amplicon, one of the most frequently amplified chromosomal regions in human cancer, but its functional role in tumorigenesis has remained unclear. The 11q13 region is amplified in ∼15% of breast cancers. Whether ANO1 is amplified in breast tumors, the extent to which gene amplification contributes to ANO1 overexpression, and whether overexpression of ANO1 is important for tumor maintenance have remained unknown. We have found that ANO1 is amplified and highly expressed in breast cancer cell lines and primary tumors. Amplification of ANO1 correlated with disease grade and poor prognosis. Knockdown of ANO1 in ANO1-amplified breast cancer cell lines and other cancers bearing 11q13 amplification inhibited proliferation, induced apoptosis, and reduced tumor growth in established cancer xenografts. Moreover, ANO1 chloride channel activity was important for cell viability. Mechanistically, ANO1 knockdown or pharmacological inhibition of its chloride-channel activity reduced EGF receptor (EGFR) and calmodulin-dependent protein kinase II (CAMKII) signaling, which subsequently attenuated AKT, v-src sarcoma viral oncogene homolog (SRC), and extracellular signal-regulated kinase (ERK) activation in vitro and in vivo. Our results highlight the involvement of the ANO1 chloride channel in tumor progression and provide insights into oncogenic signaling in human cancers with 11q13 amplification, thereby establishing ANO1 as a promising target for therapy in these highly prevalent tumor types.


Virology | 2010

Multiple cyclophilins involved in different cellular pathways mediate HCV replication.

L. Alex Gaither; Jason Borawski; Leah J. Anderson; Kara Balabanis; Piroska Dévay; Gerard Joberty; Christina Rau; Markus Schirle; Tewis Bouwmeester; Craig Mickanin; ShanChuan Zhao; Chad Vickers; Lac Lee; Gejing Deng; Jeremy Baryza; Roger Aki Fujimoto; Kai Lin; Teresa Compton; Brigitte Wiedmann

Three cyclophilin inhibitors (DEBIO-025, SCY635, and NIM811) are currently in clinical trials for hepatitis C therapy. The mechanism of action of these, however, is not completely understood. There are at least 16 cyclophilins expressed in human cells which are involved in a diverse set of cellular processes. Large-scale siRNA experiments, chemoproteomic assays with cyclophilin binding compounds, and mRNA profiling of HCV replicon containing cells were used to identify the cyclophilins that are instrumental to HCV replication. The previously reported cyclophilin A was confirmed and additional cyclophilin containing pathways were identified. Together, the experiments provide strong evidence that NIM811 reduces viral replication by inhibition of multiple cyclophilins and pathways with protein trafficking as the most strongly and persistently affected pathway.


Molecular Cancer Research | 2008

Down-Regulation of Class II Phosphoinositide 3-Kinase α Expression below a Critical Threshold Induces Apoptotic Cell Death

Winfried Elis; Ellen Triantafellow; Natalie Wolters; Katie R. Sian; Giordano Caponigro; Jason Borawski; L. Alex Gaither; Leon O. Murphy; Peter Finan; Jeffrey P. MacKeigan

Members of the phosphoinositide 3-kinase (PI3K) family collectively control multiple cellular responses, including proliferation, growth, chemotaxis, and survival. These diverse effects can partly be attributed to the broad range of downstream effectors being regulated by the products of these lipid kinases, the 3′-phosphoinositides. However, an additional layer of complexity is introduced by the existence of multiple PI3K enzyme isoforms. Much has been learned over the last years on the roles of the classes I and III PI3K members in cellular signaling, but little is known about the isoform-specific tasks done by the class II PI3Ks (C2α, β, and γ). In this study, we used quantitative reverse transcription–PCR and RNA interference in mammalian cells to gain further insight into the function of these lesser studied PI3K enzymes. We find that PI3K-C2α, but not PI3K-C2β, has an important role in controlling cell survival and by using a panel of RNA interference reagents, we were able to determine a critical threshold of PI3K-C2α mRNA levels, below which the apoptotic program is switched on, via the intrinsic cell death pathway. In addition, knockdown of PI3K-C2α to levels that by themselves do not induce apoptosis sensitize cells to the anticancer agent Taxol (paclitaxel). Lastly, we report that lowering the levels of PI3K-C2α in a number of cancer cell lines reduces their proliferation and cell viability, arguing that PI3K inhibitors targeting not only the class Iα isoform but also class IIα may contribute to an effective anticancer strategy. (Mol Cancer Res 2008;6(4):614–23)


Clinical Cancer Research | 2014

To “Grow” or “Go”: TMEM16A Expression as a Switch between Tumor Growth and Metastasis in SCCHN

Daniel J. Shiwarski; Chunbo Shao; Anke Bill; Jean Kim; Dong Xiao; Carol A. Bertrand; Raja R. Seethala; Daisuke Sano; Jeffrey N. Myers; Patrick K. Ha; Jennifer R. Grandis; L. Alex Gaither; Manojkumar A. Puthenveedu; Umamaheswar Duvvuri

Purpose: Tumor metastasis is the leading cause of death in patients with cancer. However, the mechanisms that underlie metastatic progression remain unclear. We examined TMEM16A (ANO1) expression as a key factor shifting tumors between growth and metastasis. Experimental Design: We evaluated 26 pairs of primary and metastatic lymph node (LN) tissue from patients with squamous cell carcinoma of the head and neck (SCCHN) for differential expression of TMEM16A. In addition, we identified mechanisms by which TMEM16A expression influences tumor cell motility via proteomic screens of cell lines and in vivo mouse studies of metastasis. Results: Compared with primary tumors, TMEM16A expression decreases in metastatic LNs of patients with SCCHN. Stable reduction of TMEM16A expression enhances cell motility and increases metastases while decreasing tumor proliferation in an orthotopic mouse model. Evaluation of human tumor tissues suggests an epigenetic mechanism for decreasing TMEM16A expression through promoter methylation that correlated with a transition between an epithelial and a mesenchymal phenotype. These effects of TMEM16A expression on tumor cell size and epithelial-to-mesenchymal transition (EMT) required the amino acid residue serine 970 (S970); however, mutation of S970 to alanine does not disrupt the proliferative advantages of TMEM16A overexpression. Furthermore, S970 mediates the association of TMEM16A with Radixin, an actin-scaffolding protein implicated in EMT. Conclusions: Together, our results identify TMEM16A, an eight transmembrane domain Ca2+-activated Cl− channel, as a primary driver of the “Grow” or “Go” model for cancer progression, in which TMEM16A expression acts to balance tumor proliferation and metastasis via its promoter methylation. Clin Cancer Res; 20(17); 4673–88. ©2014 AACR.


Journal of Biomolecular Screening | 2007

Optimization Procedure for Small Interfering RNA Transfection in a 384-Well Format

Jason Borawski; Alicia Lindeman; Frank P. Buxton; Mark Labow; L. Alex Gaither

High-throughput screening of RNAi libraries has become an essential part of functional analysis in academic and industrial settings. The transition of a cell-based RNAi assay into a 384-well format requires several optimization steps to ensure the phenotype being screened is appropriately measured and that the signal-to-background ratio is above a certain quantifiable threshold. Methods currently used to assess small interfering RNA (siRNA) efficacy after transfection, including quantitative PCR or branch DNA analysis, face several technical limitations preventing the accurate measurement of mRNA levels in a 384-well format. To overcome these difficulties, the authors developed an approach using a viral-based transfection system that measures siRNA efficacy in a standardized 384-well assay. This method allows measurement of siRNA activity in a phenotypically neutral manner by quantifying the knockdown of an exogenous luciferase gene delivered by a lentiviral vector. In this assay, the efficacy of a luciferase siRNA is compared to a negative control siRNA across many distinct assay parameters including cell type, cell number, lipid type, lipid volume, time of the assay, and concentration of siRNA. Once the siRNA transfection is optimized as a 384-well luciferase knockdown, the biologically relevant phenotypic analysis can proceed using the best siRNA transfection conditions. This approach provides a key technology for 384-well assay development when direct measurement of mRNA knockdown is not possible. It also allows for direct comparison of siRNA activity across cell lines from almost any mammalian species. Defining optimal conditions for siRNA delivery into mammalian cells will greatly increase the speed and quality of large-scale siRNA screening campaigns. (Journal of Biomolecular Screening 2007:546-559)


Cancer Research | 2011

Protein Kinase D3 Sensitizes RAF Inhibitor RAF265 in Melanoma Cells by Preventing Reactivation of MAPK Signaling

Jian Chen; Qiong Shen; Mark Labow; L. Alex Gaither

RAS mutations occur in more than 30% of all human cancers but efforts to directly target mutant RAS signaling as a cancer therapy have yet to succeed. As alternative strategies, RAF and MEK inhibitors have been developed to block oncogenic signaling downstream of RAS. As might be expected, studies of these inhibitors have indicated that tumors with RAS or BRAF mutations display resistance RAF or MEK inhibitors. In order to better understand the mechanistic basis for this resistance, we conducted a RNAi-based screen to identify genes that mediated chemoresistance to the RAF kinase inhibitor RAF265 in a BRAF (V600E) mutant melanoma cell line that is resistant to this drug. In this way, we found that knockdown of protein kinase D3 (PRKD3) could enhance cell killing of RAF and MEK inhibitors across multiple melanoma cell lines of various genotypes and sensitivities to RAF265. PRKD3 blockade cooperated with RAF265 to prevent reactivation of the MAPK signaling pathway, interrupt cell cycle progression, trigger apoptosis, and inhibit colony formation growth. Our findings offer initial proof-of-concept that PRKD3 is a valid target to overcome drug resistance being encountered widely in the clinic with RAF or MEK inhibitors.


Journal of Biological Chemistry | 2015

Variomics Screen Identifies the Re-entrant Loop of the Calcium-activated Chloride Channel ANO1 That Facilitates Channel Activation

Anke Bill; M. Oana Popa; Michiel T. van Diepen; Abraham Gutierrez; Sarah Lilley; Maria Velkova; Kathryn Acheson; Hedaythul Choudhury; Nicole A. Renaud; Douglas S. Auld; Martin Gosling; Paul J. Groot-Kormelink; L. Alex Gaither

Background: The calcium-activated chloride channel ANO1 regulates multiple physiological processes. Results: We identified residues that when mutated affected channel activity, intracellular trafficking, or localization and report the first structure-function map of ANO1. Conclusion: The re-entrant loop mediates calcium/voltage sensitivity and activation of ANO1. Significance: We provide new tools for studying ANO1 function in biological systems and its potential as a therapeutic target. The calcium-activated chloride channel ANO1 regulates multiple physiological processes. However, little is known about the mechanism of channel gating and regulation of ANO1 activity. Using a high-throughput, random mutagenesis-based variomics screen, we generated and functionally characterized ∼6000 ANO1 mutants and identified novel mutations that affected channel activity, intracellular trafficking, or localization of ANO1. Mutations such as S741T increased ANO1 calcium sensitivity and rendered ANO1 calcium gating voltage-independent, demonstrating a critical role of the re-entrant loop in coupling calcium and voltage sensitivity of ANO1 and hence in regulating ANO1 activation. Our data present the first unbiased and comprehensive study of the structure-function relationship of ANO1. The novel ANO1 mutants reported have diverse functional characteristics, providing new tools to study ANO1 function in biological systems, paving the path for a better understanding of the function of ANO1 and its role in health and diseases.

Collaboration


Dive into the L. Alex Gaither's collaboration.

Researchain Logo
Decentralizing Knowledge