L.B.A. de Vries
Radboud University Nijmegen Medical Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by L.B.A. de Vries.
Journal of Medical Genetics | 2003
L.B.A. de Vries; Robin M. Winter; Albert Schinzel; C.M.A. van Ravenswaaij-Arts
In recent years, subtelomeric rearrangements have been identified as a major cause of mental retardation and/or malformation syndromes. So far, over 2500 subjects with mental retardation have been tested and reported of whom ∼ 5% appeared to have a subtelomeric rearrangement. In this review, the clinical aspects of each known (submicroscopic) subtelomeric deletion will be presented and the various methods available for detecting subtelomeric abnormalities will be discussed. Not only will the patients and their families benefit from a good collection and report of the various telomeric abnormalities and their clinical phenotype, but it will also give more insight into the aetiology of mental retardation and malformation syndromes.
Journal of Medical Genetics | 2008
B.W.M. van Bon; David A. Koolen; Renato Borgatti; Alex Magee; S. Garcia-Minaur; Liesbeth Rooms; Willie Reardon; Marcella Zollino; Maria Clara Bonaglia; M. De Gregori; Francesca Novara; R. Grasso; Roberto Ciccone; H.A. van Duyvenvoorde; A.M. Aalbers; Renzo Guerrini; Elisa Fazzi; Willy M. Nillesen; S. McCullough; Sarina G. Kant; Carlo Marcelis; R.P. Pfundt; N. de Leeuw; Dominique Smeets; Erik A. Sistermans; Jan M. Wit; B.C.J. Hamel; Han G. Brunner; Frank Kooy; Orsetta Zuffardi
Background: Patients with a microscopically visible deletion of the distal part of the long arm of chromosome 1 have a recognisable phenotype, including mental retardation, microcephaly, growth retardation, a distinct facial appearance and various midline defects including corpus callosum abnormalities, cardiac, gastro-oesophageal and urogenital defects, as well as various central nervous system anomalies. Patients with a submicroscopic, subtelomeric 1qter deletion have a similar phenotype, suggesting that the main phenotype of these patients is caused by haploinsufficiency of genes in this region. Objective: To describe the clinical presentation of 13 new patients with a submicroscopic deletion of 1q43q44, of which nine were interstitial, and to report on the molecular characterisation of the deletion size. Results and conclusions: The clinical presentation of these patients has clear similarities with previously reported cases with a terminal 1q deletion. Corpus callosum abnormalities were present in 10 of our patients. The AKT3 gene has been reported as an important candidate gene causing this abnormality. However, through detailed molecular analysis of the deletion sizes in our patient cohort, we were able to delineate the critical region for corpus callosum abnormalities to a 360 kb genomic segment which contains four possible candidate genes, but excluding the AKT3 gene.
Human Mutation | 2013
A.T. van Silfhout; Jayne Y. Hehir-Kwa; B.W.M. van Bon; J.H.M. Schuurs-Hoeijmakers; Stephen Meader; C.J. Hellebrekers; I.J. Thoonen; A.P.M. de Brouwer; Han G. Brunner; Caleb Webber; Rolph Pfundt; N. de Leeuw; L.B.A. de Vries
Copy‐number variations (CNVs) are a common cause of intellectual disability and/or multiple congenital anomalies (ID/MCA). However, the clinical interpretation of CNVs remains challenging, especially for inherited CNVs. Well‐phenotyped patients (5,531) with ID/MCA were screened for rare CNVs using a 250K single‐nucleotide polymorphism array platform in order to improve the understanding of the contribution of CNVs to a patients phenotype. We detected 1,663 rare CNVs in 1,388 patients (25.1%; range 0–5 per patient) of which 437 occurred de novo and 638 were inherited. The detected CNVs were analyzed for various characteristics, gene content, and genotype–phenotype correlations. Patients with severe phenotypes, including organ malformations, had more de novo CNVs (P < 0.001), whereas patient groups with milder phenotypes, such as facial dysmorphisms, were enriched for both de novo and inherited CNVs (P < 0.001), indicating that not only de novo but also inherited CNVs can be associated with a clinically relevant phenotype. Moreover, patients with multiple CNVs presented with a more severe phenotype than patients with a single CNV (P < 0.001), pointing to a combinatorial effect of the additional CNVs. In addition, we identified 20 de novo single‐gene CNVs that directly indicate novel genes for ID/MCA, including ZFHX4, ANKH, DLG2, MPP7, CEP89, TRIO, ASTN2, and PIK3C3.
Human Mutation | 2009
Dominic McMullan; Michael Bonin; Jayne Y. Hehir-Kwa; L.B.A. de Vries; Andreas Dufke; E. Rattenberry; Marloes Steehouwer; Luminita Moruz; R.P. Pfundt; N. de Leeuw; A. Riess; O. Altug-Teber; Herbert Enders; S. Singer; Ute Grasshoff; M. Walter; J.M. Walker; C.V. Lamb; E.V. Davison; Louise Brueton; Olaf Riess; Joris A. Veltman
Genomic microarrays have been implemented in the diagnosis of patients with unexplained mental retardation. This method, although revolutionizing cytogenetics, is still limited to the detection of rare de novo copy number variants (CNVs). Genome‐wide single nucleotide polymorphism (SNP) microarrays provide high‐resolution genotype as well as CNV information in a single experiment. We hypothesize that the widespread use of these microarray platforms can be exploited to greatly improve our understanding of the genetic causes of mental retardation and many other common disorders, while already providing a robust platform for routine diagnostics. Here we report a detailed validation of Affymetrix 500k SNP microarrays for the detection of CNVs associated to mental retardation. After this validation we applied the same platform in a multicenter study to test a total of 120 patients with unexplained mental retardation and their parents. Rare de novo CNVs were identified in 15% of cases, showing the importance of this approach in daily clinical practice. In addition, much more genomic variation was observed in these patients as well as their parents. We provide all of these data for the scientific community to jointly enhance our understanding of these genomic variants and their potential role in this common disorder. Hum Mutat 30:1–11, 2009.
Journal of Medical Genetics | 2004
Tjitske Kleefstra; Helger G. Yntema; Astrid R. Oudakker; Martijn J.G. Banning; Vera M. Kalscheuer; Jamel Chelly; Claude Moraine; Hans-Hilger Ropers; Fryns Jp; Irene M. Janssen; Erik A. Sistermans; W. N. Nillesen; L.B.A. de Vries; B.C.J. Hamel; H. van Bokhoven
X-linked mental retardation (XLMR) has a prevalence of 2.6 cases per 1000 population, accounting for over 10% of all cases of mental retardation. Clinically, XLMR exists in syndromic (MRXS) and non-syndromic (MRX) forms, that is without other distinguishing features. Non-syndromic X-linked mental retardation (MRX) is a highly heterogeneous group of conditions in which mental retardation (MR) is the only consistent clinical feature in patients. This in contrast to syndromic forms of X-linked mental retardation (MRXS), where MR is associated with recognisable clinical signs such as congenital malformations, neurological features, or metabolic disturbances. Identifying novel genes that are responsible for MRX is difficult due to the heterogeneity of this disorder. At present 30 genes have been identified as playing a role in MRXS. However in MRX, only 15 genes are known to be involved accounting for less than one-fifth of all MRX.1–6 The recent observations that RSK2, MECP2 , and ARX play a role in both syndromic and non-syndromic forms of XLMR,7–10 suggest that a molecular basis to strictly separate these two forms is not always present. In addition, careful clinical re-examination of patients with an OPHN1 gene mutation has revealed distinctive phenotypic hallmarks, such as cerebellar hypoplasia, in patients who were previously classified as non-syndromic.11,12 The frequency of causative mutations in any of the 15 MRX genes known today appears to be very low, so in the majority of patients with MRX the genetic cause is still not known. It has been suggested that up to 100 different genes might be involved in MRX.1–4 Seven of the 15 genes have been cloned on the basis of their disruption by chromosomal rearrangements in mentally retarded patients. Recently, it has been predicted that approximately 30% of all mutations underlying MRX are located in the …
Journal of Medical Genetics | 2007
N. de Leeuw; R.P. Pfundt; David A. Koolen; Ineke Neefs; I. Scheltinga; Hanneke Mieloo; Erik A. Sistermans; Willy M. Nillesen; Dominique Smeets; L.B.A. de Vries; Nine V.A.M. Knoers
A 32-year-old, mentally retarded male was referred to our centre for further clinical genetic analysis. He was born to non-consanguineous parents after 42 weeks’ gestation with a birth weight of 3500 g. He had a healthy older brother. In the neonatal period he was hypotonic and at 8 weeks of age he underwent surgery because of an inguinal hernia with removal of an atrophic right testis. His motor development was severely delayed with sitting at 3.5 years and walking at 5 years of age. Speech was poorly developed, characterised by the usage of only a few words. During infancy an optic nerve hypoplasia was diagnosed, and during childhood he frequently suffered from luxations of the patellae, which required surgery. At the age of 32 years his height is 163 cm (−3 SDS) and head circumference 52.5 cm (⩽2.5 SDS). He has a narrow receding forehead, widened inner canthal distance of 3.5 cm (90th centile), normal outer canthal distance of 8.5 cm (25th centile), telecanthus, short and down slanting palpebral fissures, epicanthal folds, ptosis, long, straight eyelashes, high nasal bridge, low set large ears, flat philtrum, small mouth with high, narrow palate and retrognathia. The thorax is broad with increased internipple distance and slight gynaecomastia. A recent renal ultrasound revealed multiple cysts in the left, dystrophic kidney and two uncomplicated cysts in the enlarged, right kidney. The patient has a normally sized phallus with absent right testis and small left testis. His hands show a simian crease right and tapering fingers with broad proximal interphalangeal joints. He shows sandal gaps on both flat feet with clinodactyly of the fourth and fifth toes …
Journal of Medical Genetics | 2013
Marjolein H. Willemsen; Bonnie Nijhof; Michaela Fenckova; Willy M. Nillesen; Ernie M.H.F. Bongers; Anna Castells-Nobau; Lenke Asztalos; Erika Virágh; B.W.M. van Bon; E. Tezel; Joris A. Veltman; Han G. Brunner; L.B.A. de Vries; J. de Ligt; Helger G. Yntema; H. van Bokhoven; Bertrand Isidor; C Le Caignec; E. Lorino; Z. Asztalos; David A. Koolen; Lisenka E.L.M. Vissers; Annette Schenck; Tjitske Kleefstra
Background GATA zinc finger domain containing 2B (GATAD2B) encodes a subunit of the MeCP1-Mi-2/nucleosome remodelling and deacetylase complex involved in chromatin modification and regulation of transcription. We recently identified two de novo loss-of-function mutations in GATAD2B by whole exome sequencing in two unrelated individuals with severe intellectual disability. Methods To identify additional individuals with GATAD2B aberrations, we searched for microdeletions overlapping with GATAD2B in inhouse and international databases, and performed targeted Sanger sequencing of the GATAD2B locus in a selected cohort of 80 individuals based on an overlap with the clinical features in the two index cases. To address whether GATAD2B is required directly in neurones for cognition and neuronal development, we investigated the role of Drosophila GATAD2B orthologue simjang (simj) in learning and synaptic connectivity. Results We identified a third individual with a 240 kb microdeletion encompassing GATAD2B and a fourth unrelated individual with GATAD2B loss-of-function mutation. Detailed clinical description showed that all four individuals with a GATAD2B aberration had a distinctive phenotype with childhood hypotonia, severe intellectual disability, limited speech, tubular shaped nose with broad nasal tip, short philtrum, sparse hair and strabismus. Neuronal knockdown of Drosophila GATAD2B orthologue, simj, resulted in impaired learning and altered synapse morphology. Conclusions We hereby define a novel clinically recognisable intellectual disability syndrome caused by loss-of-function of GATAD2B. Our results in Drosophila suggest that GATAD2B is required directly in neurones for normal cognitive performance and synapse development.
Clinical Dysmorphology | 2001
L.B.A. de Vries; W.G. van 't Hoff; R. Surtees; Robin M. Winter
We present four cases with nephrotic syndrome, microcephaly and severe developmental delay. In the differential diagnosis the Galloway-Mowat syndrome, PEHO syndrome, ARC syndrome and the carbohydrate-deficient glycoprotein (CDG) syndrome are considered and discussed. One case may fall into the Galloway-Mowat spectrum and another case was diagnosed with the CDG syndrome. This case is the third report of a nephrotic syndrome as a part of the CDG syndrome. Two remaining cases with cerebellar and brain stem atrophy, and without major histopathological changes in the kidney were left without a definite unifying diagnosis and may well represent a different unknown condition. Although microcephaly and nephrotic syndrome with or without hiatus hernia has been equated with Galloway-Mowat syndrome in the literature, the brain and renal pathology in these reported cases has been very variable. It is likely that this group as a whole is aetiologically heterogeneous.
European Journal of Human Genetics | 2005
David A. Koolen; Nine V.A.M. Knoers; Willy M. Nillesen; G.H. Slabbers; Dominique Smeets; N. de Leeuw; Erik A. Sistermans; L.B.A. de Vries
Partial iris hypoplasia in a patient with an interstitial subtelomeric 6p deletion not including the forkhead transcription factor gene FOXC1
Clinical Dysmorphology | 2010
E.M. Ruiter; E.J. Kamsteeg; G. Meroni; L.B.A. de Vries
The X-linked Opitz G/BBB syndrome (OS) is a congenital malformation disorder characterized by hypertelorism, swallowing difficulties, hypospadias, and additional midline malformations. Loss of function mutations in the MID1 gene at Xp22.3 are responsible for the X-linked form of OS. Various mutations are found all over the gene but without a clear genotype–phenotype correlation. We describe additional family studies of a previously reported boy with a relatively mild form of OS, caused by the unique p.Lys370Glu (c.1108A>G) mutation in MID1. The same mutation was found in his clinically affected brother but also in the healthy maternal uncle. To our knowledge, this is the first report of a MID1 missense mutation causing non-penetrance in a male.