Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where L. Caceres is active.

Publication


Featured researches published by L. Caceres.


Physical Review Letters | 2012

Well Developed Deformation in 42Si

S. Takeuchi; Michio M. Matsushita; N. Aoi; P. Doornenbal; K. Li; T. Motobayashi; Heiko Scheit; D. Steppenbeck; Hailiang Wang; H. Baba; D. Bazin; L. Caceres; H. L. Crawford; P. Fallon; R. Gernhäuser; J. Gibelin; S. Go; S. Grévy; C. Hinke; C. R. Hoffman; R. Hughes; E. Ideguchi; D. G. Jenkins; N. Kobayashi; Y. Kondo; R. Krücken; T. Le Bleis; Jenny Lee; G. Lee; A. Matta

Excited states in (38,40,42) Si nuclei have been studied via in-beam γ-ray spectroscopy with multinucleon removal reactions. Intense radioactive beams of ^{40}S and (44)S provided at the new facility of the RIKEN Radioactive Isotope Beam Factory enabled γ-γ coincidence measurements. A prominent γ line observed with an energy of 742(8) keV in (42) Si confirms the 2(+) state reported in an earlier study. Among the γ lines observed in coincidence with the 2^{+} → 0+ transition, the most probable candidate for the transition from the yrast 4(+) state was identified, leading to a 4(1)+) energy of 2173(14) keV. The energy ratio of 2.93(5) between the 2(1)+ and 4(1)(+) states indicates well-developed deformation in (42) Si at N = 28 and Z = 14. Also for 38,40)Si energy ratios with values of 2.09(5) and 2.56(5) were obtained. Together with the ratio for (42)Si, the results show a rapid deformation development of Si isotopes from N = 24 to N = 28.


Physical Review Letters | 2012

Unveiling the intruder deformed 0

F. Rotaru; F. Negoita; S. Grévy; J. Mrazek; S. M. Lukyanov; F. Nowacki; A. Poves; O. Sorlin; C. Borcea; R. Borcea; A. Buta; L. Caceres; S. Calinescu; R. Chevrier; Zs. Dombrádi; J. M. Daugas; D. Lebhertz; Y. Penionzhkevich; C. Petrone; D. Sohler; M. Stanoiu; J. C. Thomas

The 02(+) state in 34Si has been populated at the GANIL-LISE3 facility through the β decay of a newly discovered 1(+) isomer in 34Al of 26(1) ms half-life. The simultaneous detection of e(+)e(-) pairs allowed the determination of the excitation energy E(02(+))=2719(3)  keV and the half-life T(1/2)=19.4(7) ns, from which an electric monopole strength of ρ(2)(E0)=13.0(0.9)×10(-3) was deduced. The 2(1)(+) state is observed to decay both to the 0(1)(+) ground state and to the newly observed 0(2)(+) state [via a 607(2) keV transition] with a ratio R(2(1)(+)→0(1)(+)/2(1)(+)→0(2)(+))=1380(717). Gathering all information, a weak mixing with the 0(1)(+) and a large deformation parameter of β=0.29(4) are found for the 0(2)(+) state, in good agreement with shell model calculations using a new SDPF-U-MIX interaction allowing np-nh excitations across the N=20 shell gap.


Physical Review Letters | 2012

^+_2

F. Rotaru; F. Negoita; S. Grévy; J. Mrazek; S. M. Lukyanov; F. Nowacki; A. Poves; O. Sorlin; C. Borcea; R. Borcea; A. Buta; L. Caceres; S. Calinescu; R. Chevrier; Zs. Dombrádi; J. M. Daugas; D. Lebhertz; Y. Penionzhkevich; C. Petrone; D. Sohler; M. Stanoiu; J. C. Thomas

The 02(+) state in 34Si has been populated at the GANIL-LISE3 facility through the β decay of a newly discovered 1(+) isomer in 34Al of 26(1) ms half-life. The simultaneous detection of e(+)e(-) pairs allowed the determination of the excitation energy E(02(+))=2719(3)  keV and the half-life T(1/2)=19.4(7) ns, from which an electric monopole strength of ρ(2)(E0)=13.0(0.9)×10(-3) was deduced. The 2(1)(+) state is observed to decay both to the 0(1)(+) ground state and to the newly observed 0(2)(+) state [via a 607(2) keV transition] with a ratio R(2(1)(+)→0(1)(+)/2(1)(+)→0(2)(+))=1380(717). Gathering all information, a weak mixing with the 0(1)(+) and a large deformation parameter of β=0.29(4) are found for the 0(2)(+) state, in good agreement with shell model calculations using a new SDPF-U-MIX interaction allowing np-nh excitations across the N=20 shell gap.


Physical Review Letters | 2014

state in

G. Burgunder; O. Sorlin; F Nowacki; S. Giron; F. Hammache; M Moukaddam; N. de Sereville; D. Beaumel; L. Caceres; E Clement; G Duchene; J. P Ebran; B. Fernandez-Dominguez; F. Flavigny; S. Franchoo; J. Gibelin; A. Gillibert; S. Grévy; J. Guillot; A. Lepailleur; I. Matea; A. Matta; L. Nalpas; A. Obertelli; Takaharu Otsuka; J Pancin; A Poves; R. Raabe; J.A. Scarpaci; I. Stefan

Energies and spectroscopic factors of the first 7/2-, 3/2-, 1/2-, and 5/2- states in the (35)Si21 nucleus were determined by means of the (d, p) transfer reaction in inverse kinematics at GANIL using the MUST2 and EXOGAM detectors. By comparing the spectroscopic information on the Si35 and S37 isotones, a reduction of the p3/2-p1/2 spin-orbit splitting by about 25% is proposed, while the f7/2-f5/2 spin-orbit splitting seems to remain constant. These features, derived after having unfolded nuclear correlations using shell model calculations, have been attributed to the properties of the two-body spin-orbit interaction, the amplitude of which is derived for the first time in an atomic nucleus. The present results, remarkably well reproduced by using several realistic nucleon-nucleon forces, provide a unique touchstone for the modeling of the spin-orbit interaction in atomic nuclei.


Physical Review Letters | 2013

^{34}

Lie-Wen Chen; P. M. Walker; H. Geissel; Yuri Litivnov; K. Beckert; P. Beller; F. Bosch; D. Boutin; L. Caceres; J.J. Carroll; D. M. Cullen; I. J. Cullen; B. Franzke; J. Gerl; M. Gorska; G. A. Jones; A. M. Kishada; R. Knöbel; C. Kozhuharov; J. Kurcewicz; S. Litvinov; Z. Liu; S. Mandal; Fernando Montes; G. Münzenberg; F. Nolden; T. Ohtsubo; Z. Patyk; Zs. Plaß; W.R. Podolyák

Long-lived isomers in (212)Bi have been studied following (238)U projectile fragmentation at 670 MeV per nucleon. The fragmentation products were injected as highly charged ions into a storage ring, giving access to masses and half-lives. While the excitation energy of the first isomer of (212)Bi was confirmed, the second isomer was observed at 1478(30) keV, in contrast to the previously accepted value of >1910 keV. It was also found to have an extended Lorentz-corrected in-ring half-life >30 min, compared to 7.0(3) min for the neutral atom. Both the energy and half-life differences can be understood as being due a substantial, though previously unrecognized, internal decay branch for neutral atoms. Earlier shell-model calculations are now found to give good agreement with the isomer excitation energy. Furthermore, these and new calculations predict the existence of states at slightly higher energy that could facilitate isomer deexcitation studies.


Physical Review Letters | 2010

Si

C. Force; S. Grévy; L. Gaudefroy; O. Sorlin; L. Caceres; F. Rotaru; J. Mrazek; N. L. Achouri; J. C. Angélique; F. Azaiez; B. Bastin; R. Borcea; A. Buta; J. M. Daugas; Z. Dlouhy; Zs. Dombrádi; F. de Oliveira; F. Negoita; Y. Penionzhkevich; M. G. Saint-Laurent; D. Sohler; M. Stanoiu; I. Stefan; C. Stodel; F. Nowacki

The structure of 44S has been studied by using delayed γ and electron spectroscopy. The decay rates of the 02+ isomeric state to the 2(1)+ and 0(1)+ states, measured for the first time, lead to a reduced transition probability B(E2: 2(1)+→0(2)+)=8.4(26) e(2) fm4 and a monopole strength ρ2(E0: 0(2)+→0(1)+)=8.7(7)×10(-3). Comparisons to shell model calculations point towards prolate-spherical shape coexistence, and a two-level mixing model is used to extract a weak mixing between the two configurations.


Physical Review Letters | 2014

Unveiling the Intruder Deformed02+State inSi34

S. E. A. Orrigo; B. Rubio; Y. Fujita; B. Blank; W. Gelletly; J. Agramunt; A. Algora; P. Ascher; B. Bilgier; L. Caceres; R. B. Cakirli; H. Fujita; E. Ganioglu; M. Gerbaux; J. Giovinazzo; S. Grévy; O. Kamalou; H. C. Kozer; L. Kucuk; T. Kurtukian-Nieto; F. Molina; L. Popescu; A. M. Rogers; G. Susoy; C. Stodel; T. Suzuki; A. Tamii; J. C. Thomas

We report the observation of a very exotic decay mode at the proton drip line, the β-delayed γ-proton decay, clearly seen in the β decay of the T_{z}=-2 nucleus ^{56}Zn. Three γ-proton sequences have been observed after the β decay. Here this decay mode, already observed in the sd shell, is seen for the first time in the fp shell. Both γ and proton decays have been taken into account in the estimation of the Fermi and Gamow-Teller strengths. Evidence for fragmentation of the Fermi strength due to strong isospin mixing is found.


Physical Review C | 2013

Experimental Study of the Two-Body Spin-Orbit Force in Nuclei

He Wang; N. Aoi; Satoshi Takeuchi; Masafumi Matsushita; P. Doornenbal; Tohru Motobayashi; D. Steppenbeck; K. Yoneda; Hidetada Baba; L. Caceres; Zs. Dombrádi; K. Kobayashi; Y. Kondo; Jenny Lee; K. Li; H. L. Liu; Ryogo Minakata; D. Nishimura; Hideaki Otsu; S. Sakaguchi; H. Sakurai; Heiko Scheit; D. Sohler; Ye-Lei Sun; Zhengyang Tian; R. Tanaka; Y. Togano; Zs. Vajta; Zaihong Yang; Tetsuya Yamamoto

The neutron-rich, even-even 122,124,126Pd isotopes has been studied via in-beam gamma-ray spectroscopy at the RIKEN Radioactive Isotope Beam Factory. Excited states at 499(9), 590(11), and 686(17) keV were found in the three isotopes, which we assign to the respective 2+ -> 0+ decays. In addition, a candidate for the 4+ state at 1164(20) keV was observed in 122Pd. The resulting Ex(2+) systematics are essentially similar to those of the Xe (Z=54) isotopic chain and theoretical prediction by IBM-2, suggesting no serious shell quenching in the Pd isotopes in the vicinity of N=82.


International Journal of Modern Physics E-nuclear Physics | 2009

Direct observation of long-lived isomers in 212Bi.

S. J. Steer; Zs. Podolyák; S. Pietri; M. Górska; G. F. Farrelly; P. H. Regan; Dirk Rudolph; A. B. Garnsworthy; R. Hoischen; J. Gerl; H. J. Wollersheim; H. Grawe; K. H. Maier; F. Becker; P. Bednarczyk; L. Caceres; P. Doornenbal; H. Geissel; J. Grbosz; A. Kelic; I. Kojouharov; N. Kurz; F. Montes; W. Prokopowicz; T. Saito; H. Schaffner; S. Tashenov; A. Heinz; T. Kurtukian-Nieto; G. Benzoni

Heavy neutron-rich nuclei were populated via relativistic energy fragmentation of a E/A = 1 GeV208Pb beam. The nuclei of interest were selected and identified by a fragment separator and then implanted in a passive plastic stopper. Delayed γ rays following internal isomeric decays were detected by the RISING array. Experimental information was obtained on a number of nuclei with Z = 73-80 (Ta-Hg), providing new information both on the prolate-oblate transitional region as well as on the N = 126 closed shell nuclei.


Physical Review Letters | 2013

Prolate-Spherical Shape Coexistence at N=28 in 44 S

Lie-Wen Chen; P. M. Walker; H. Geissel; Yu. A. Litvinov; K. Beckert; P. Beller; F. Bosch; D. Boutin; L. Caceres; J.J. Carroll; D. M. Cullen; I. J. Cullen; B. Franzke; J. Gerl; M. Gorska; G. A. Jones; A. M. Kishada; R. Knöbel; C. Kozhuharov; J. Kurcewicz; S. Litvinov; Z. Liu; S. Mandal; F. Montes; G. Münzenberg; F. Nolden; T. Ohtsubo; Z. Patyk; W.R. Plaß; Zs. Podolyák

Long-lived isomers in (212)Bi have been studied following (238)U projectile fragmentation at 670 MeV per nucleon. The fragmentation products were injected as highly charged ions into a storage ring, giving access to masses and half-lives. While the excitation energy of the first isomer of (212)Bi was confirmed, the second isomer was observed at 1478(30) keV, in contrast to the previously accepted value of >1910 keV. It was also found to have an extended Lorentz-corrected in-ring half-life >30 min, compared to 7.0(3) min for the neutral atom. Both the energy and half-life differences can be understood as being due a substantial, though previously unrecognized, internal decay branch for neutral atoms. Earlier shell-model calculations are now found to give good agreement with the isomer excitation energy. Furthermore, these and new calculations predict the existence of states at slightly higher energy that could facilitate isomer deexcitation studies.

Collaboration


Dive into the L. Caceres's collaboration.

Top Co-Authors

Avatar

J. Gerl

GSI Helmholtz Centre for Heavy Ion Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Gorska

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

P. Bednarczyk

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

H. Geissel

GSI Helmholtz Centre for Heavy Ion Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

I. Kojouharov

GSI Helmholtz Centre for Heavy Ion Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. Benzoni

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar

J. Grebosz

Polish Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge