L. Christine Turtzo
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by L. Christine Turtzo.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Jie Lu; Jason M. Frerich; L. Christine Turtzo; Siqi Li; Jeffrey Chiang; Chunzhang Yang; Xiaoping Wang; Chao Zhang; Chenxi Wu; Zhongchan Sun; Gang Niu; Zhengping Zhuang; Roscoe O. Brady; Xiaoyuan Chen
Acute traumatic brain injury (TBI) is associated with long-term cognitive and behavioral dysfunction. In vivo studies have shown histone deacetylase inhibitors (HDACis) to be neuroprotective following TBI in rodent models. HDACis are intriguing candidates because they are capable of provoking widespread genetic changes and modulation of protein function. By using known HDACis and a unique small-molecule pan-HDACi (LB-205), we investigated the effects and mechanisms associated with HDACi-induced neuroprotection following CNS injury in an astrocyte scratch assay in vitro and a rat TBI model in vivo. We demonstrate the preservation of sufficient expression of nerve growth factor (NGF) and activation of the neurotrophic tyrosine kinase receptor type 1 (TrkA) pathway following HDACi treatment to be crucial in stimulating the survival of CNS cells after TBI. HDACi treatment up-regulated the expression of NGF, phospho-TrkA, phospho-protein kinase B (p-AKT), NF-κB, and B-cell lymphoma 2 (Bcl-2) cell survival factors while down-regulating the expression of p75 neurotrophin receptor (NTR), phospho-JNK, and Bcl-2–associated X protein apoptosis factors. HDACi treatment also increased the expression of the stem cell biomarker nestin, and decreased the expression of reactive astrocyte biomarker GFAP within damaged tissue following TBI. These findings provide further insight into the mechanisms by which HDACi treatment after TBI is neuroprotective and support the continued study of HDACis following acute TBI.
Annals of Neurology | 2016
Tsang-Wei Tu; Rashida A. Williams; Jacob Lescher; Neekita Jikaria; L. Christine Turtzo; Joseph A. Frank
Metrics of diffusion tensor imaging (DTI) and magnetization transfer imaging (MTI) can detect diffuse axonal injury in traumatic brain injury (TBI). The relationship between the changes in these imaging measures and the underlying pathologies is still relatively unknown. This study investigated the radiological–pathological correlation between these imaging techniques and immunohistochemistry using a closed head rat model of TBI.
NMR in Biomedicine | 2013
L. Christine Turtzo; Matthew D. Budde; Eric Gold; Bobbi K. Lewis; Lindsay Janes; Angela Yarnell; Neil E. Grunberg; William D. Watson; Joseph A. Frank
Serial MRI facilitates the in vivo analysis of the intra‐ and intersubject evolution of traumatic brain injury lesions. Despite the availability of MRI, the natural history of experimental focal contusion lesions in the controlled cortical impact (CCI) rat model has not been well described. We performed CCI on rats and MRI during the acute to chronic stages of cerebral injury to investigate the time course of changes in the brain. Female Wistar rats underwent CCI of their left motor cortex with a flat impact tip driven by an electromagnetic piston. In vivo MRI was performed at 7 T serially over 6 weeks post‐CCI. The appearances of CCI‐induced lesions and lesion‐associated cortical volumes were variable on MRI, with the percentage change in cortical volume of the CCI ipsilateral side relative to the contralateral side ranging from 18% within 2 h of injury on day 0 to a peak of 35% on day 1, and a trough of –28% by week 5/6, with an average standard deviation of ±14% at any given time point. In contrast, the percentage change in cortical volume of the ipsilateral side relative to the contralateral side in control rats was not significant (1 ± 2%). Hemorrhagic conversion within and surrounding the CCI lesion occurred between days 2 and 9 in 45% of rats, with no hemorrhage noted on the initial scan. Furthermore, hemorrhage and hemosiderin within the lesion were positive for Prussian blue and highly autofluorescent on histological examination. Although some variation in injuries may be technique related, the divergence of similar lesions between initial and final scans demonstrates the inherent biological variability of the CCI rat model. Published 2012. This article is a US Government work and is in the public domain in the USA.
Journal of Neuropathology and Experimental Neurology | 2014
Tsang-Wei Tu; L. Christine Turtzo; Rashida A. Williams; Jacob Lescher; Dana D. Dean; Joseph A. Frank
Abstract Wistar rats are widely used in biomedical research and commonly serve as a model organism in neuroscience studies. In most cases when noninvasive imaging is not used, studies assume a consistent baseline condition in rats that lack visible differences. While performing a series of traumatic brain injury studies, we discovered mild spontaneous ventriculomegaly in 70 (43.2%) of 162 Wistar rats that had been obtained from 2 different vendors. Advanced magnetic resonance (MR) imaging techniques, including MR angiography and diffusion tensor imaging, were used to evaluate the rats. Multiple neuropathologic abnormalities, including presumed arteriovenous malformations, aneurysms, cysts, white matter lesions, and astrogliosis were found in association with ventriculomegaly. Postmortem microcomputed tomography and immunohistochemical staining confirmed the presence of aneurysms and arteriovenous malformations. Diffusion tensor imaging showed significant decreases in fractional anisotropy and increases in mean diffusivity, axial diffusivity, and radial diffusivity in multiple white matter tracts (p < 0.05). These results could impact the interpretation, for example, of a pseudo-increase of axon integrity and a pseudo-decrease of myelin integrity, based on characteristics intrinsic to rats with ventriculomegaly. We suggest the use of baseline imaging to prevent the inadvertent introduction of a high degree of variability in preclinical studies of neurologic disease or injury in Wistar rats.
PLOS ONE | 2015
L. Christine Turtzo; Matthew D. Budde; Dana D. Dean; Eric Gold; Bobbi K. Lewis; Lindsay Janes; Jacob Lescher; Tiziana Coppola; Angela Yarnell; Neil E. Grunberg; Joseph A. Frank
Mesenchymal stromal cells secrete a variety of anti-inflammatory factors and may provide a regenerative medicine option for the treatment of traumatic brain injury. The present study investigates the efficacy of multiple intravenous or intracardiac administrations of rat mesenchymal stromal cells or human mesenchymal stromal cells in female rats after controlled cortical impact by in vivo MRI, neurobehavior, and histopathology evaluation. Neither intravenous nor intracardiac administration of mesenchymal stromal cells derived from either rats or humans improved MRI measures of lesion volume or neurobehavioral outcome compared to saline treatment. Few mesenchymal stromal cells (<0.0005% of injected dose) were found within 3 days of last dosage at the site of injury after either delivery route, with no mesenchymal stromal cells being detectable in brain at 30 or 56 days post-injury. These findings suggest that non-autologous mesenchymal stromal cells therapy via intravenous or intracardiac administration is not a promising treatment after focal contusion traumatic brain injury in this female rodent model.
Frontiers in Aging Neuroscience | 2016
Young-Eun Cho; Lawrence L. Latour; Hyungsuk Kim; L. Christine Turtzo; Anlys Olivera; Whitney Livingston; Dan Wang; Christiana Martin; Chen Lai; Ann Cashion; Jessica Gill
Older age consistently relates to a lesser ability to fully recover from a traumatic brain injury (TBI); however, there is limited data to explicate the nature of age-related risks. This study was undertaken to determine the relationship of age on gene-activity following a TBI, and how this biomarker relates to changes in neuroimaging findings. A young group (between the ages of 19 and 35 years), and an old group (between the ages of 60 and 89 years) were compared on global gene-activity within 48 h following a TBI, and then at follow-up within 1-week. At each time-point, gene expression profiles, and imaging findings from both magnetic resonance imaging (MRI) and computed tomography were obtained and compared. The young group was found to have greater gene expression of inflammatory regulatory genes at 48 h and 1-week in genes such as basic leucine zipper transcription factor 2 (BACH2), leucine-rich repeat neuronal 3 (LRRN3), and lymphoid enhancer-binding factor 1 (LEF1) compared to the old group. In the old group, there was increased activity in genes within S100 family, including calcium binding protein P (S100P) and S100 calcium binding protein A8 (S100A8), which previous studies have linked to poor recovery from TBI. The old group also had reduced activity of the noggin (NOG) gene, which is a member of the transforming growth factor-β superfamily and is linked to neurorecovery and neuroregeneration compared to the young group. We link these gene expression findings that were validated to neuroimaging, reporting that in the old group with a MRI finding of TBI-related damage, there was a lesser likelihood to then have a negative MRI finding at follow-up compared to the young group. Together, these data indicate that age impacts gene activity following a TBI, and suggest that this differential activity related to immune regulation and neurorecovery contributes to a lesser likelihood of neuronal recovery in older patients as indicated through neuroimaging.
Annals of clinical and translational neurology | 2018
Kimbra Kenney; Franck Amyot; Carol Moore; Margalit Haber; L. Christine Turtzo; Christian Shenouda; Erika Silverman; Yunhua Gong; Bao Xi Qu; Leah Harburg; Eric M. Wassermann; Hanzhang Lu; Ramon Diaz-Arrastia
Traumatic cerebrovascular injury (TCVI), a common consequence of traumatic brain injury (TBI), presents an attractive therapeutic target. Because phosphodiesterase‐5 (PDE5) inhibitors potentiate the action of nitric oxide (NO) produced by endothelial cells, they are candidate therapies for TCVI. This study aims to: (1) measure cerebral blood flow (CBF), cerebrovascular reactivity (CVR), and change in CVR after a single dose of sildenafil (ΔCVR) in chronic TBI compared to uninjured controls; (2) examine the safety and tolerability of 8‐week sildenafil administration in chronic symptomatic moderate/severe TBI patients; and as an exploratory aim, (3) assess the effect of an 8‐week course of sildenafil on chronic TBI symptoms.
Journal of Neurotrauma | 2018
Martin Cota; Anita Moses; Neekita Jikaria; Katie Bittner; Ramon Diaz-Arrastia; Lawrence L. Latour; L. Christine Turtzo
Accurate diagnosis of traumatic brain injury (TBI) is critical to ensure that patients receive appropriate follow-up care, avoid risk of subsequent injury, and are aware of possible long-term consequences. However, diagnosis of TBI, particularly in the emergency department (ED), can be difficult because the symptoms of TBI are vague and nonspecific, and patients with suspected TBI may present with additional injuries that require immediate medical attention. We performed a retrospective chart review to evaluate accuracy of TBI diagnosis in the ED. Records of 1641 patients presenting to the ED with suspected TBI and a head computed tomography (CT) were reviewed. We found only 47% of patients meeting the American Congress of Rehabilitation Medicine criteria for TBI received a documented ED diagnosis of TBI in medical records. After controlling for demographic and clinical factors, patients presenting at a level I trauma center, with cause of injury other than fall, without CT findings of TBI, and without loss of consciousness were more likely to lack documented diagnosis despite meeting diagnostic criteria for TBI. A greater proportion of patients without documented ED diagnosis of TBI were discharged home compared to those with a documented diagnosis of TBI (58% vs. 40%; p < 0.001). Together, these data suggest that many patients who have sustained a TBI are discharged home from the ED without a documented diagnosis of TBI, and that improved awareness and implementation of diagnostic criteria for TBI is important in the ED and for in- and outpatient providers.
Current protocols in protein science | 2017
Dana D. Dean; Joseph A. Frank; L. Christine Turtzo
Traumatic brain injury (TBI) is a major cause of death and disability world‐wide. Following initial injury, TBI patients can face long‐term disability in the form of cognitive, physical, and psychological deficits, depending on the severity and location of injury. This results in an economic burden in the United States estimated to be
Journal of Neuroinflammation | 2014
L. Christine Turtzo; Jacob Lescher; Lindsay Janes; Dana D. Dean; Matthew D. Budde; Joseph A. Frank
60 billion due to health‐care costs and loss of productivity. TBI is a significant area of active research interest for both military and civilian medicine. Numerous pre‐clinical animal models of TBI are used to characterize the anatomical and physiological pathways involved and to evaluate therapeutic interventions. Due to its flexibility and scalability, controlled cortical impact (CCI) is one of the most commonly used preclinical TBI models. This unit provides a basic CCI protocol performed in the rat.