L. D. Ziegler
Boston University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by L. D. Ziegler.
Journal of Chemical Physics | 1992
Minhaeng Cho; Sandra J. Rosenthal; Norbert F. Scherer; L. D. Ziegler; Graham R. Fleming
The vibrational characteristics of liquid dynamics are used to describe the ultrafast relaxations observed in time‐dependent fluorescence Stokes shift [J. Chem. Phys. 95, 4715 (1991)] and heterodyne detected optical Kerr effect measurements on acetonitrile, via a Brownian oscillator model. Introducing a frequency distribution of vibrational modes makes it possible to compare the two experiments. The ultrafast decays observed in the fluorescence Stokes shift and optical Kerr signals are produced by destructive superposition of the high frequency, underdamped modes.
Journal of Physical Chemistry B | 2012
W. R. Premasiri; John C. Lee; L. D. Ziegler
SERS spectra of whole human blood, blood plasma, and red blood cells on Au nanoparticle SiO(2) substrates excited at 785 nm have been observed. For the sample preparation procedure employed here, the SERS spectrum of whole blood arises from the blood plasma component only. This is in contrast to the normal Raman spectrum of whole blood excited at 785 nm and open to ambient air, which is exclusively due to the scattering of oxyhemoglobin. The SERS spectrum of whole blood shows a storage time dependence that is not evident in the non-SERS Raman spectrum of whole blood. Hypoxanthine, a product of purine degradation, dominates the SERS spectrum of blood after ~10-20 h of storage at 8 °C. The corresponding SERS spectrum of plasma isolated from the stored blood shows the same temporal release of hypoxanthine. Thus, blood cellular components (red blood cells, white blood cells, and/or platelets) are releasing hypoxanthine into the plasma over this time interval. The SERS spectrum of red blood cells (RBCs) excited at 785 nm is reported for the first time and exhibits well-known heme group marker bands as well as other bands that may be attributed to cell membrane components or protein denaturation contributions. SERS, as well as normal Raman spectra, of oxy- and met-RBCs are reported and compared. These SERS results can have significant impact in the area of clinical diagnostics, blood supply management, and forensics.
Lab on a Chip | 2010
Jane Yuqian Zhang; Jaephil Do; W. Ranjith Premasiri; L. D. Ziegler; Catherine M. Klapperich
We report a low cost, disposable polymer microfluidic sample preparation device to perform rapid concentration of bacteria from liquid samples using enhanced evaporation targeted at downstream detection using surface enhanced Raman spectroscopy (SERS). The device is composed of a poly(dimethylsiloxane) (PDMS) liquid sample flow layer, a reusable metal airflow layer, and a porous PTFE (Teflon™) membrane sandwiched in between the liquid and air layers. The concentration capacity of the device was successfully demonstrated with fluorescently tagged Escherichia coli (E. coli). The recovery concentration was above 85% for all initial concentrations lower than 1 × 10(4) CFU mL(-1). In the lowest initial concentration cases, 100 µL initial volumes of bacteria solution at 100 CFU mL(-1) were concentrated into 500 nL droplets with greater than 90% efficiency in 15 min. Subsequent tests with SERS on clinically relevant Methicillin-Sensitive Staphylococcus aureus (MSSA) after concentration in this device proved more than 100-fold enhancement in SERS signal intensity compared to the signal obtained from the unconcentrated sample. The concentration device is straightforward to design and use, and as such could be used in conjunction with a number of detection technologies.
Journal of Chemical Physics | 1994
L. D. Ziegler; R. Fan; A. E. Desrosiers; Norbert F. Scherer
A density matrix treatment of the time evolution of the third order polarization response describing the optical heterodyne detected (OHD) transient birefringence and dichroism excited by ultrafast pulses is given. The relationship between frequency domain (Raman scattering) and time domain (pump–probe) spectroscopies is revealed by this pathway explicit description. Constructive and destructive interferences between time evolution density matrix pathways account for the respective strong birefringent and weak dichroic ground state nuclear response when the pulses are electronically nonresonant. However, for electronically resonant chromophores, the dichroic response is larger than the corresponding birefringent response due to constructive and destructive interferences respectively between density matrix time evolution histories. No such interferences contribute to spontaneous Raman scattering. The relative magnitude of the resonant dichroic and birefringent responses is pulse width dependent in the fast...
Applied Spectroscopy | 2011
W. Ranjith Premasiri; Yoseph Gebregziabher; L. D. Ziegler
It has been recently suggested [N. E. Marotta and L. A. Bottomley, Appl. Spectrosc. 64, 601–606 (2010)] that previously reported surface-enhanced Raman scattering (SERS) spectra of vegetative bacterial cells are due to residual cell growth media that were not properly removed from samples of the lab-cultured microorganism suspensions. SERS spectra of several commonly used cell growth media are similar to those of bacterial cells, as shown here and reported elsewhere. However, a multivariate data analysis approach shows that SERS spectra of different bacterial species grown in the same growth media exhibit different characteristic vibrational spectra, SERS spectra of the same organism grown in different media display the same SERS spectrum, and SERS spectra of growth media do not cluster near the SERS spectra of washed bacteria. Furthermore, a bacterial SERS spectrum grown in a minimal medium, which uses inorganics for a nitrogen source and displays virtually no SERS features, exhibits a characteristic bacterial SERS spectrum. We use multivariate analysis to show how successive water washing and centrifugation cycles remove cell growth media and result in a robust bacterial SERS spectrum in contrast to the previous study attributing bacterial SERS signals to growth media.
Journal of Chemical Physics | 1996
T. Kalbfleisch; L. D. Ziegler; T. Keyes
An instantaneous normal mode (INM) analysis of the short‐time solvation dynamics of the B‐state (200 nm) Rydberg excitation of methyl iodide in high pressures of Ar (ρ*=0.08, 0.3, and 0.8) is presented. Solute–solvent interaction potentials for this system have been determined by previous absorption and resonance scattering studies. The B‐state transition energy correlation function (ECF), also known as the solvation correlation function, calculated by the linear coupling INM theory is in good agreement with the ECF given by molecular dynamics simulation at short times (≤150 fs) that are well beyond the so‐called inertial regime (≤100 fs). The shape and peak frequency of the solvation spectra are relatively constant over the wide range of bath densities considered here in contrast to the INM total density of states. This is attributed to the relative density independence of the first peak in the solute–solvent pair distribution function. Similarly, the ECFs are also only modestly dependent on solvent dens...
Journal of Chemical Physics | 2000
Xingdong Ji; Heather Ahlborn; Brian Space; Preston B. Moore; Y. Zhou; S. Constantine; L. D. Ziegler
The depolarized reduced Raman and corresponding optical Kerr effect (OKE) spectral density of ambient CS2 have been calculated by way of time correlation function (TCF) and instantaneous normal mode (INM) methods and compared with experimental OKE data. When compared in the reduced Raman spectrum form, where the INM spectrum is proportional to the squared polarizability derivative weighted density of states (DOS), the INM results agree nearly quantitatively (at all but the lowest frequencies) with the TCF results. Both are in excellent agreement with experimental measurements. The INM signal has a significant contribution from the imaginary INMs. Within our INM theory of spectroscopy the imaginary INMs contribute like the real modes, at the magnitude of their imaginary frequency. When only the real modes are allowed to contribute, and the spectrum is rescaled to account for the missing degrees of freedom, the results are much poorer, as has been observed previously. When the spectra are compared in their ...
Journal of Chemical Physics | 1992
L. D. Ziegler; Norbert F. Scherer
The recently demonstrated technique of optically phase‐locked pulse‐pair (PLPP) excited spontaneous emission is described by a third‐order perturbative density matrix approach. A nonlinear polarization description shows how PLPP spectroscopy depends on all the relevant material dephasing time scales. The time and frequency integrated resonance spontaneous emission consists entirely of resonance fluorescence, and is derived exclusively from excited‐state population decay terms, i.e., diagonal second‐order density‐matrix elements. These third‐order polarization results are proportional to the previously derived linear polarization expressions found to describe the observed PLPP I2 vapor emission. The nonlinear treatment allows a comparison of this technique to other forms of ultrafast pump–probe spectroscopies such as transient absorption and photon echo techniques. The role of impulsively prepared coherences is clearly described by this analysis. The effect of pulse duration, relative to material dephasing...
Applied Physics Letters | 2008
Rui Li; J. R. Schneck; J. Warga; L. D. Ziegler; L. Dal Negro
Ultrafast two-color pump-probe measurements, time-resolved photoluminescence (TRPL), and photoluminescence excitation measurements were performed on Si-rich nitride (SRN) and Er doped SRN (Er:SRN) nanocrystals samples. Transient absorption data were compared with picosecond TRPL and excited state absorption cross (ESA) sections σ were measured at different wavelengths. Our data show that σ in Er:SRN, which is approximately 10−19cm2 at 1.54μm, does not scale with the ∼λ2 behavior predicted by simple free carrier absorption models. Finally, our data demonstrate that in Er:SRN efficient energy transfer to Er ions occurs on the nanosecond time scale with reduced ESA compared to Er-doped oxide-based systems.
ACS Nano | 2011
D. Mark Harrah; Jude Schneck; Alexander A. Green; Mark C. Hersam; L. D. Ziegler; Anna K. Swan
The exciton dynamics for an ensemble of individual, suspended (6,5), single-walled carbon nanotubes revealed by single color E(22) resonant pump-probe spectroscopy for a wide range of pump fluences are reported. The optically excited initial exciton population ranges from approximately 5 to 120 excitons per ∼725 nm nanotube. At the higher fluences of this range, the pump-probe signals are no longer linearly dependent on the pump intensity. A single, predictive model is described that fits all data for two decades of pump fluences and three decades of delay times. The model introduces population loss from the optically active zero momentum E(22) state to the rest of the E(22) subband, which is dark due to momentum selection rules. In the single exciton limit, the E(11) dynamics are well described by a stretched exponential, which is a direct consequence of diffusion quenching from an ensemble of nanotubes of different lengths. The observed change in population relaxation dynamics as a function of increasing pump intensity is attributed to exciton-exciton Auger de-excitation in the E(11) subband and, to a lesser extent, in the E(22) subband. From the fit to the model, an average defect density 1/ρ = 150 nm and diffusion constants D(11) = 4 cm(2)/s and D(22) = 0.2 cm(2)/s are determined.