L. D. Zorova
Moscow State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by L. D. Zorova.
Biochemistry | 2005
Dmitry B. Zorov; S. Y. Bannikova; Vsevolod V. Belousov; Mikhail Yu. Vyssokikh; L. D. Zorova; N. K. Isaev; Boris F. Krasnikov; E. Y. Plotnikov
Chemical and physiological functions of molecular oxygen and reactive oxygen species (ROS)and existing equilibrium between pools of pro-oxidants and anti-oxidants providing steady state ROS level vital for normal mitochondrial and cell functioning are reviewed. The presence of intracellular oxygen and ROS sensors is postulated and few candidates for this role are suggested. Possible involvement of ROS in the process of fragmentation of mitochondrial reticulum made of long mitochondrial filaments serving in the cell as “electric cables”, as well as the role of ROS in apoptosis and programmed mitochondrial destruction (mitoptosis) are reviewed. The critical role of ROS in destructive processes under ischemia/reoxygenation and ischemic preconditioning is discussed. Mitochondrial permeability transition gets special consideration as a possible component of the apoptotic cascade, resulting in excessive “ROS induced ROS release”.
Biochemistry | 2012
Egor Y. Plotnikov; D. N. Silachev; S. S. Jankauskas; Tatyana I. Rokitskaya; Anastasia A. Chupyrkina; I. B. Pevzner; L. D. Zorova; N. K. Isaev; Yuri N. Antonenko; Vladimir P. Skulachev; Dmitry B. Zorov
It is generally accepted that mitochondrial production of reactive oxygen species is nonlinearly related to the value of the mitochondrial membrane potential with significant increment at values exceeding 150 mV. Due to this, high values of the membrane potential are highly dangerous, specifically under pathological conditions associated with oxidative stress. Mild uncoupling of oxidative phosphorylation is an approach to preventing hyperpolarization of the mitochondrial membrane. We confirmed data obtained earlier in our group that dodecylrhodamine 19 (C12R1) (a penetrating cation from SkQ family not possessing a plastoquinone group) has uncoupling properties, this fact making it highly potent for use in prevention of pathologies associated with oxidative stress induced by mitochondrial hyperpolarization. Further experiments showed that C12R1 provided nephroprotection under ischemia/reperfusion of the kidney as well as under rhabdomyolysis through diminishing of renal dysfunction manifested by elevated level of blood creatinine and urea. Similar nephroprotective properties were observed for low doses (275 nmol/kg) of the conventional uncoupler 2,4-dinitrophenol. Another penetrating cation that did not demonstrate protonophorous activity (SkQR4) had no effect on renal dysfunction. In experiments with induced ischemic stroke, C12R1 did not have any effect on the area of ischemic damage, but it significantly lowered neurological deficit. We conclude that beneficial effects of penetrating cation derivatives of rhodamine 19 in renal pathologies and brain ischemia may be at least partially explained by uncoupling of oxidation and phosphorylation.
Biochemistry | 2007
Dmitry B. Zorov; N. K. Isaev; E. Yu. Plotnikov; L. D. Zorova; E. V. Stelmashook; A. K. Vasileva; A.A. Arkhangelskaya; T. G. Khrjapenkova
The signaling function of mitochondria is considered with a special emphasis on their role in the regulation of redox status of the cell, possibly determining a number of pathologies including cancer and aging. The review summarizes the transport role of mitochondria in energy supply to all cellular compartments (mitochondria as an electric cable in the cell), the role of mitochondria in plastic metabolism of the cell including synthesis of heme, steroids, iron-sulfur clusters, and reactive oxygen and nitrogen species. Mitochondria also play an important role in the Ca2+-signaling and the regulation of apoptotic cell death. Knowledge of mechanisms responsible for apoptotic cell death is important for the strategy for prevention of unwanted degradation of postmitotic cells such as cardiomyocytes and neurons.
Biochemistry | 2014
Dmitry B. Zorov; Egor Y. Plotnikov; D. N. Silachev; L. D. Zorova; I. B. Pevzner; S. D. Zorov; V. A. Babenko; S. S. Jankauskas; V. A. Popkov; P. S. Savina
The recent revival of old theories and setting them on modern scientific rails to a large extent are also relevant to mitochondrial science. Given the widespread belief that mitochondria are symbionts of ancient bacterial origin, the processes inherent to mitochondrial physiology can be revised based on their comparative analysis with possible involvement of bacteria. Such comparison combined with discussion of the role of microbiota in pathogenesis allows discussion of the role of “mitobiota” (we introduce this term) as the combination of different phenotypic manifestations of mitochondria in the organism reflecting pathological changes in the mitochondrial genome. When putting an equal sign between mitochondria and bacteria, we find similarity between the mitochondrial and bacterial theories of cancer. The presence of the term “bacterial infection” suggests “mitochondrial infection”, and mitochondrial (oxidative) theory of aging can in some way be transformed into a “bacterial theory of aging”. The possible existence of such processes and the data confirming their presence are discussed in this review. If such a comparison has the right to exist, the homeostasis of “mitobiota” is of not lesser physiological importance than homeostasis of microbiota, which has been so intensively discussed recently.
Biochemistry | 2012
S. S. Jankauskas; Egor Y. Plotnikov; Maria A. Morosanova; I. B. Pevzner; L. D. Zorova; Vladimir P. Skulachev; Dmitry B. Zorov
The influence of the mitochondria-targeted antioxidant SkQR1 on gentamycin-induced nephrotoxicity and ototoxicity has been analyzed. SkQR1 reduces the death of kidney epithelium cells and decreases the severity of renal failure caused by gentamycin application and also lowers the animals’ mortality. Treatment with SkQR1 also decreases gentamycininduced hearing loss. Mitochondria-targeted antioxidants, such as SkQR1, are new promising agents for preventing negative consequences of therapy with antibiotics.
Biochemistry | 2012
Dmitry B. Zorov; Egor Y. Plotnikov; S. S. Jankauskas; N. K. Isaev; D. N. Silachev; L. D. Zorova; I. B. Pevzner; Natalya V. Pulkova; S. D. Zorov; Maria A. Morosanova
Programmed execution of various cells and intracellular structures is hypothesized to be not the only example of elimination of biological systems — the general mechanism can also involve programmed execution of organs and organisms. Modern rating of programmed cell death mechanisms includes 13 mechanistic types. As for some types, the mechanism of actuation and manifestation of cell execution has been basically elucidated, while the causes and intermediate steps of the process of fatal failure of organs and organisms remain unknown. The analysis of deaths resulting from a sudden heart arrest or multiple organ failure and other acute and chronic pathologies leads to the conclusion of a special role of mitochondria and oxidative stress activating the immune system. Possible mechanisms of mitochondria-mediated induction of the signaling cascades involved in organ failure and death of the organism are discussed. These mechanisms include generation of reactive oxygen species and damage-associated molecular patterns in mitochondria. Some examples of renal failure-induced deaths are presented with mechanisms and settings determined by some hypothetical super system rather than by the kidneys themselves. This system plays the key role in the process of physiological senescence and termination of an organism. The facts presented suggest that it is the immune system involved in mitochondrial signaling that can act as the system responsible for the organism’s death.
Biochemistry | 2013
Dmitry B. Zorov; N. K. Isaev; Egor Y. Plotnikov; D. N. Silachev; L. D. Zorova; I. B. Pevzner; Maria A. Morosanova; S. S. Jankauskas; S. D. Zorov; V. A. Babenko
Mitochondrial medicine was established more than 50 years ago after discovery of the very first pathology caused by impaired mitochondria. Since then, more than 100 mitochondrial pathologies have been discovered. However, the number may be significantly higher if we interpret the term “mitochondrial medicine” more widely and include in these pathologies not only those determined by the genetic apparatus of the nucleus and mitochondria, but also acquired mitochondrial defects of non-genetic nature. Now the main problems of mitochondriology arise from methodology, this being due to studies of mitochondrial activities under different models and conditions that are far from the functioning of mitochondria in a cell, organ, or organism. Controversial behavior of mitochondria (“friends and foes”) to some extent might be explained by their bacterial origin with possible preservation of “egoistic” features peculiar to bacteria. Apparently, for normal mitochondrial functioning it is essential to maintain homeostasis of a number of mitochondrial elements such as mitochondrial DNA structure, membrane potential, and the system of mitochondrial quality control. Abrogation of these elements can cause a number of pathologies that have become subjects of mitochondrial medicine. Some approaches to therapy of mitochondrial pathologies are discussed.
Toxicology Letters | 2013
E. Y. Plotnikov; O.A. Grebenchikov; V. A. Babenko; I. B. Pevzner; L. D. Zorova; V.V. Likhvantsev; Dmitry B. Zorov
Nephrotoxicity and ototoxicity are the most considerable side effects of aminoglycoside antibiotics, such as gentamicin that seriously limits its application in medicine. The major mechanism of negative effect of gentamicin on kidney cells involves damage of mitochondria and induction of an oxidative stress that causes cell death resulting in kidney dysfunction. In this work we compared effects of the lithium ions and δ-opioid receptors agonist, dalargin on gentamicin-induced kidney injury. It was revealed that LiCl and dalargin treatment reduced renal tubular cell death and diminished kidney injury caused by gentamicin. Both LiCl and dalargin were found to enhance phosphorylation of glycogen synthase kinase 3β in the kidney which points to induction of nephroprotective signaling pathways. Thus, we conclude that lithium ions and dalargin might be considered as novel promising agents for future use to prevent negative consequences of therapy with aminoglycoside antibiotics.
Biochemistry | 2014
Egor Y. Plotnikov; D. N. Silachev; L. D. Zorova; I. B. Pevzner; S. S. Jankauskas; S. D. Zorov; V. A. Babenko; Maxim V. Skulachev; Dmitry B. Zorov
For many decades pharmacological drugs based on lithium salts have been successfully used in psychiatry to treat bipolar disorder, and they remain the “gold standard” of pharmacological therapy of patients with this disease. At the same time, over recent years in experiments in vitro and in vivo a plethora of evidence has accumulated on a positive effect of lithium ions in other areas including their neuro-, cardio-, and nephroprotective properties, regulation of stem cells functions, regulation of inflammation, and others. Numerous studies have shown that the effect of lithium ions involves several mechanisms; however, one of its main targets in the implementation of most of the effects is glycogen synthase kinase 3β, a key enzyme in various pathological and protective signaling pathways in cells. However, one of the main limitations of the use of lithium salts in clinics is their narrow therapeutic window, and the risk of toxic side effects. This review presents the diversity of effects of lithium ions on the organism emphasizing their potential clinical applications with minimal undesirable side effects. In the end, we present a schematic “Lithiometer”, comparing the range of Li+ concentrations that might be used for the treatment of acute pathologies with possible toxic effects of Li+.
Biochemistry | 2015
Egor Y. Plotnikov; V. A. Babenko; D. N. Silachev; L. D. Zorova; T. G. Khryapenkova; E. S. Savchenko; I. B. Pevzner; Dmitry B. Zorov
Recently described phenomenon of intercellular transfer of mitochondria attracts the attention of researchers in both fundamental science and translational medicine. In particular, the transfer of mitochondria results in the initiation of stem cell differentiation, in reprogramming of differentiated cells, and in the recovery of the lost mitochondrial function in recipient cells. However, the mechanisms of mitochondria transfer between cells and conditions inducing this phenomenon are studied insufficiently. It is still questionable whether this phenomenon exists in vivo. Moreover, it is unclear, how the transfer of mitochondria into somatic cells is affected by the ubiquitination system that, for example, is responsible for the elimination of “alien” mitochondria of the spermatozoon in the oocyte during fertilization. Studies on these processes can provide a powerful incentive for development of strategies for treatment of mitochondria-associated pathologies and give rise a new avenue for therapeutic approaches based on “mitochondrial transplantation”.