Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where L. Deecke is active.

Publication


Featured researches published by L. Deecke.


NeuroImage | 2002

The preparation and execution of self-initiated and externally-triggered movement: A study of event-related fMRI

Ross Cunnington; Christian Windischberger; L. Deecke; Ewald Moser

Studies of functional brain imaging in humans and single cell recordings in monkeys have generally shown preferential involvement of the medially located supplementary motor area (SMA) in self-initiated movement and the lateral premotor cortex in externally cued movement. Studies of event-related cortical potentials recorded during movement preparation, however, generally show increased cortical activity prior to self-initiated movements but little activity at early stages prior to movements that are externally cued at unpredictable times. In this study, the spatial location and relative timing of activation for self-initiated and externally triggered movements were examined using rapid event-related functional MRI. Twelve healthy right-handed subjects were imaged while performing a brief finger sequence movement (three rapid alternating button presses: index-middle-index finger) made either in response to an unpredictably timed auditory cue (between 8 to 24 s after the previous movement) or at self-paced irregular intervals. Both movement conditions involved similar strong activation of medial motor areas including the pre-SMA, SMA proper, and rostral cingulate cortex, as well as activation within contralateral primary motor, superior parietal, and insula cortex. Activation within the basal ganglia was found for self-initiated movements only, while externally triggered movements involved additional bilateral activation of primary auditory cortex. Although the level of SMA and cingulate cortex activation did not differ significantly between movement conditions, the timing of the hemodynamic response within the pre-SMA was significantly earlier for self-initiated compared with externally triggered movements. This clearly reflects involvement of the pre-SMA in early processes associated with the preparation for voluntary movement.


Experimental Brain Research | 1990

Supplementary motor area activation while tapping bimanually different rhythms in musicians

Wilfried Lang; H. Obrig; Gerald Lindinger; D. Cheyne; L. Deecke

SummaryIn 15 musicians, cortical DC-potentials were recorded from the scalp before and during the execution of bimanual motor sequences. Subjects (Ss) either tapped with their two index fingers in synchrony (quavers against quavers; “2 against 2”) or they tapped quavers against triplets (“2 against 3”). Either the right or the left finger started tapping the quavers (onset time t1), after about 4 s the other finger joined in (t2) either with quavers as well (easy rhythm) or with triplets (difficult rhythm). Ss were free to start the sequences, i.e. to determine the onset times t1 and t2. Shifts of cortical DC potentials were averaged twice; (1) time-locked to t1 and (2) time-locked to t2. When moving in synchrony (easy rhythm) DC-potential shifts and maps of radial current densities across the scalp indicated activations of the two primary motor cortices (MI). When bimanually tapping different rhythms, there was not only an activation of MI cortices, but in addition a very large activation of the mesial, central cortex was observed. It is suggested that this cortical area which mainly contains the supplementary motor area (SMA) has the function of controlling the initiations of movements in the difficult sequence which have to fit into a very precise timing plan. Interestingly, activation of the mesial, central cortex preceded the actual performance of the difficult rhythm by about 4 s. This finding indicates that the preparatory set differs between the two tasks.


NeuroImage | 1999

Neuroimage of Voluntary Movement: Topography of the Bereitschaftspotential, a 64-Channel DC Current Source Density Study☆

R.Q. Cui; Daniela Huter; Wilfried Lang; L. Deecke

The Bereitschaftspotential (BP) was recorded at 56 scalp positions when 17 healthy subjects performed brisk extensions of the right index finger. Aim of the study was to contribute to our understanding of the physiology underlying the BP and, in particular, to specify the situation at BP onset. For this purpose, the spatial pattern of the BP was analyzed in short time intervals (35 and/or 70 ms) starting 2.51 s before movement onset. For each time segment a spherical model of the BP was calculated by using spline interpolation. Then the spatial distribution of the electric potential at the scalp surface was transformed into a spatial distribution of current source densities (CSD map). Onset times of the BP and onset times of initial CSD-activity ranged between 2.23 and 1.81 s before movement onset. We selected a time window between 1.6 and 1.5 s before movement onset in order to analyze the spatial CSD pattern in each subject. In 10 subjects there was a significant current sink in the scalp area located over medial-wall motor areas (pre-SMA, SMA proper and anterior cingulate cortex: electrode positions C1, C2, FCz, Cz) in the absence of a significant current sink over the primary motor cortex (MI: electrode positions C3, CP3, and CP5). In three subjects significant current sinks were present at both sites and in another three subjects a current sink only over the lateral motor cortex was observed. In one subject no significant current sinks were measured. It is concluded that there is a large group of subjects (13/17) in whom BP at onset is associated with a current sink over medial-wall motor areas. At a later time interval (0.6 to 0.5 s before movement onset), significant current sinks were found in 13 subjects in medial and in 10 subjects in lateral recordings. These data were considered to be consistent with the hypothesis that, at least in a majority of subjects, medial-wall motor areas are activated earlier than lateral motor areas when organizing the initiation of a simple self-paced movement. Surface-recordings of the EEG do not allow further specification of cortical areas, which contribute to the current sinks. But in context with the current literature of the electrophysiology of nonhuman primates and of brain imaging in humans it is suggested that SMA and anterior cingulate cortex contribute to the current sink, the fronto-central midline, and that the primary motor cortex (MI) contributes to the current sink in the scalp area, which is located above MI and closely posterior to it.


Neuroscience Letters | 1991

On the functionality of the visually deprived occipital cortex in early blind persons

F. Uhl; P. Franzen; Gerald Lindinger; Wilfried Lang; L. Deecke

In early blind mammals, the deprived visual cortex undergoes anatomical and functional alterations. Its functional role was investigated in the early human blind by using patterns of cortical activation as measured by scalp-recorded event-related slow negative DC potential shifts. The blind showed higher occipital negativity than did sighted persons both during a tactile reading task and a non-reading tactile control task. Results point to a possible role for the blinds visual cortex in tactile processes.


NeuroImage | 2001

Finger Somatotopy in Human Motor Cortex

Roland Beisteiner; Christian Windischberger; Rupert Lanzenberger; Vinod Edward; Ross Cunnington; Marcus Erdler; Andreas Gartus; Bernhard Streibl; Ewald Moser; L. Deecke

Although qualitative reports about somatotopic representation of fingers in the human motor cortex exist, up to now no study could provide clear statistical evidence. The goal of the present study was to reinvestigate finger motor somatotopy by means of a thorough investigation of standardized movements of the index and little finger of the right hand. Using high resolution fMRI at 3 Tesla, blood oxygenation level-dependent (BOLD) responses in a group of 26 subjects were repeatedly measured to achieve reliable statistical results. The center of mass of all activated voxels within the primary motor cortex was calculated for each finger and each run. Results of all runs were averaged to yield an individual index and little finger representation for each subject. The mean center of mass localizations for all subjects were then submitted to a paired t test. Results show a highly significant though small scale somatotopy of fingerspecific activation patterns in the order indicated by Penfields motor homunculus. In addition, considerable overlap of finger specific BOLD responses was found. Comparing various methods of analysis, the mean center of mass distance for the two fingers was 2--3 mm with overlapping voxels included and 4--5 mm with overlapping voxels excluded. Our data may be best understood in the context of the work of Schieber (1999) who recently described overlapping somatotopic gradients in lesion studies with humans.


Clinical Neurophysiology | 2000

High resolution spatiotemporal analysis of the contingent negative variation in simple or complex motor tasks and a non-motor task

R.Q. Cui; Alexander Egkher; Daniela Huter; Wilfried Lang; Gerald Lindinger; L. Deecke

OBJECTIVES Since the characteristics of the Bereitschaftspotential (BP) - voluntary movement paradigm of internally-driven movements - have been established recently by our group using high resolution DC-EEG techniques, it was of great interest to apply similar techniques to the other slow brain potential--contingent negative variation (CNV) of externally-cued movements--with the same motor tasks using the same subjects. METHODS The CNV for simple bimanual sequential movements (task 1), complex bimanual sequential movements (task 2) and a non-motor condition (task 3) was recorded on the scalp using a 64 channel DC-EEG in 16 healthy subjects, and the data were analyzed with high resolution spatiotemporal statistics and current source density (CSD). RESULTS (1) The CNV was distributed over frontal, frontocentral, central and centroparietal regions; a negative potential was found at the frontal pole and a positive potential was found over occipital regions. (2) CNV amplitudes were higher for task 2 than for task 1, and there was no late CNV for task 3. (3) A high resolution spatiotemporal analysis revealed that during the early CNV component, statistical differences existed between the motor tasks (tasks 1 and 2) and the non-motor task (task 3), which occurred at frontocentral, central, centroparietal, parietal and parieto-occipital regions. During the late CNV component, additional significant differences were found not only between the motor tasks and the non-motor task but also between motor task 1 and task 2 at frontocentral, central and centroparietal regions. (4) Comparison of the CNV between the frontomesial cortex (situated over the supplementary/cingulate areas, SCMA) and both lateral pre-central areas (situated over the primary motor areas, MIs) showed that there was no statistically significant difference between the two cortical motor areas except for the early CNV. (5) Comparison of the CNV between the 3 tasks over the cortical motor areas showed that there were significant differences between the motor tasks and the non-motor task regarding the auditory evoked potential (AEP) and the early CNV component, and between all 3 tasks in the late CNV, the visual evoked potential (VEP(2)) and the N-P component. (6) The ranges and the densities of the CSD maps were larger and higher for complex than for simple tasks. The current sinks of the AEP and the early CNV were located at Fz, the late CNV at FCz and surrounding regions. As to be expected, current sources of the VEPs were located at the occipital lobes. The CNV was a current sink (negative) except for the VEPs main component which was a current source (positive). CONCLUSIONS (1) The CNV topography over the scalp varied with the complexity of motor tasks and between motor and non-motor conditions. (2) The origin of the early CNV may rest in the frontal lobes, while the late CNV may stem from more extensive cortical areas including SCMA, MIs, etc. (3) The late CNV component is not identical with the BP.


NeuroImage | 2000

Supplementary Motor Area Activation Preceding Voluntary Movement Is Detectable with a Whole-Scalp Magnetoencephalography System

Marcus Erdler; Roland Beisteiner; D. Mayer; T. Kaindl; Vinod Edward; Christian Windischberger; Gerald Lindinger; L. Deecke

Despite the fact that the knowledge about the structure and the function of the supplementary motor area (SMA) is steadily increasing, the role of the SMA in the human brain, e.g., the contribution of the SMA to the Bereitschaftspotential, still remains unclear and controversial. The goal of this study was to contribute further to this discussion by taking advantage of the increased spatial information of a whole-scalp magnetoencephalography (MEG) system enabling us to record the magnetic equivalent of the Bereitschaftspotential 1, the Bereitschaftsfeld 1 (BF 1) or readiness field 1. Five subjects performed a complex, and one subject a simple, finger-tapping task. It was possible to record the BF 1 for all subjects. The first appearance of the BF 1 was in the range of -1.9 to -1.7 s prior to movement onset, except for the subject performing the simple task (-1 s). Analysis of the development of the magnetic field distribution and the channel waveforms showed the beginning of the Bereitschaftsfeld 2 (BF 2) or readiness field 2 at about -0.5 s prior to movement onset. In the time range of BF 1, dipole source analysis localized the source in the SMA only, whereas dipole source analysis containing also the time range of BF 2 resulted in dipole models, including dipoles in the primary motor area. In summary, with a whole-head MEG system, it was possible for the first time to detect SMA activity in healthy subjects with MEG.


Experimental Brain Research | 1989

Negative cortical DC shifts preceding and accompanying simple and complex sequential movements

Wilfried Lang; O. Zilch; Ch. Koska; Gerald Lindinger; L. Deecke

SummaryNegative cortical DC shifts preceding and accompanying the execution of four different motor tasks were analysed in 18 subjects (Ss): Repetitive flexions and extensions of the forefinger had to be performed either by the right (1) or the left (2) hand. This simple motor task was compared to a complex one in which flexions and extensions of forefinger and hand had to be alternated in a fixed sequence. The complex task had either to be performed by the right (3) or the left (4) hand. Thus, the four conditions differed in the side of the performing hand (right/left) and in task-complexity (simple/complex). After its voluntary initiation, each task had to be performed for at least a period of six seconds. A Bereitschaftspotential (BP) preceded the voluntary initiation of the movement. Task-performance was accompanied by a negative DC shift called a performance-related negativity (N-P). Amplitudes of BP and N-P were compared by analysis of variance (ANOVA) using the factors “performing hand” (right/left) and “task-complexity” (simple/complex). “Performing hand” had significant effects on N-BP and N-P in C3* and C4* (positioned over the primary motor cortex) but did not influence mid-central (Cz*), frontal (F3, Fz, and F4) or parietal (P3, Pz, P4) recordings. “Task-complexity” had significant effects on N-P in mid-central (Cz*, C1*, C2*) and parietal (P3, Pz) recordings with higher negativity for complex movements. Recordings in C3* and C4* did not vary with “task complexity”. Dissociative effects of “performing hand” and “task-complexity” indicate that movement-related DC-potential shifts in C3*/ C4* can functionally be separated from those recorded in Cz*. Variations depending on the specific properties of the tasks were found to be larger during performance than during preparation of the task.


Experimental Brain Research | 1991

Three-dimensional localization of SMA activity preceding voluntary movement

Wilfried Lang; D. Cheyne; R. Kristeva; Roland Beisteiner; Gerald Lindinger; L. Deecke

SummaryPrevious studies by magnetoencephalography (MEG) failed to consistently localize the activity of the supplementary motor area (SMA) prior to voluntary movements in healthy human subjects. Based on the assumption that the SMA of either hemisphere is active prior to volunatry movements, the negative findings of previous studies could be explained by the hypothesis that magnetic fields of current dipole sources in the two SMAs may cancel each other. The present MEG study was performed in a patient with a complete vascular lesion of the right SMA. In this case it was possible to consistently localize a current dipole source in the intact left SMA starting about 1200 msec prior to the initiation of voluntary movements of the right thumb. Starting at about 600 msec prior to movement onset the assumption of a current dipole source in the left primary motor cortex was needed to account for the observed fields. Measurements of brain potentials were consistent with MEG findings of activity of the left SMA starting about 1200 msec prior to movement onset.


Neuroscience Letters | 1993

Increased regional cerebral blood flow in inferior occipital cortex and cerebellum of early blind humans.

F. Uhl; P. Franzen; I. Podreka; M. Steiner; L. Deecke

Cerebral flow indices were measured in 7 early blind and 13 sighted persons twice, during a task of passive and of active touch. In the blind, inferior occipital and cerebellar indices were higher. But they were not significantly modified by the kind of tactile task.

Collaboration


Dive into the L. Deecke's collaboration.

Top Co-Authors

Avatar

Gerald Lindinger

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roland Beisteiner

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ewald Moser

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge