Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where L. E. Talbert is active.

Publication


Featured researches published by L. E. Talbert.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars

Colin Cavanagh; Shiaoman Chao; Shichen Wang; Bevan Emma Huang; Stuart Stephen; Seifollah Kiani; Kerrie L. Forrest; Cyrille Saintenac; Gina Brown-Guedira; Alina Akhunova; Deven R. See; Guihua Bai; Michael O. Pumphrey; Luxmi Tomar; Debbie Wong; Stephan Kong; Matthew P. Reynolds; Marta Lopez da Silva; Harold E. Bockelman; L. E. Talbert; James A. Anderson; Susanne Dreisigacker; Arron H. Carter; Viktor Korzun; Peter L. Morrell; Jorge Dubcovsky; Matthew K. Morell; Mark E. Sorrells; Matthew J. Hayden; Eduard Akhunov

Domesticated crops experience strong human-mediated selection aimed at developing high-yielding varieties adapted to local conditions. To detect regions of the wheat genome subject to selection during improvement, we developed a high-throughput array to interrogate 9,000 gene-associated single-nucleotide polymorphisms (SNP) in a worldwide sample of 2,994 accessions of hexaploid wheat including landraces and modern cultivars. Using a SNP-based diversity map we characterized the impact of crop improvement on genomic and geographic patterns of genetic diversity. We found evidence of a small population bottleneck and extensive use of ancestral variation often traceable to founders of cultivars from diverse geographic regions. Analyzing genetic differentiation among populations and the extent of haplotype sharing, we identified allelic variants subjected to selection during improvement. Selective sweeps were found around genes involved in the regulation of flowering time and phenology. An introgression of a wild relative-derived gene conferring resistance to a fungal pathogen was detected by haplotype-based analysis. Comparing selective sweeps identified in different populations, we show that selection likely acts on distinct targets or multiple functionally equivalent alleles in different portions of the geographic range of wheat. The majority of the selected alleles were present at low frequency in local populations, suggesting either weak selection pressure or temporal variation in the targets of directional selection during breeding probably associated with changing agricultural practices or environmental conditions. The developed SNP chip and map of genetic variation provide a resource for advancing wheat breeding and supporting future population genomic and genome-wide association studies in wheat.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Enhanced ADP-glucose pyrophosphorylase activity in wheat endosperm increases seed yield

Eric D. Smidansky; Maureen Clancy; Fletcher D. Meyer; S. P. Lanning; N. K. Blake; L. E. Talbert; Michael J. Giroux

Yield in cereals is a function of seed number and weight; both parameters are largely controlled by seed sink strength. The allosteric enzyme ADP-glucose pyrophosphorylase (AGP) plays a key role in regulating starch biosynthesis in cereal seeds and is likely the most important determinant of seed sink strength. Plant AGPs are heterotetrameric, consisting of two large and two small subunits. We transformed wheat (Triticum aestivum L.) with a modified form of the maize (Zea mays L.) Shrunken2 gene (Sh2r6hs), which encodes an altered AGP large subunit. The altered large subunit gives rise to a maize AGP heterotetramer with decreased sensitivity to its negative allosteric effector, orthophosphate, and more stable interactions between large and small subunits. The Sh2r6hs transgene was still functional after five generations in wheat. Developing seeds from Sh2r6hs transgenic wheat exhibited increased AGP activity in the presence of a range of orthophosphate concentrations in vitro. Transgenic Sh2r6hs wheat lines produced on average 38% more seed weight per plant. Total plant biomass was increased by 31% in Sh2r6hs plants. Results indicate increased availability and utilization of resources in response to enhanced seed sink strength, increasing seed yield, and total plant biomass.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae

Ming-Cheng LuoM.-C. Luo; Karin R. Deal; Eduard Akhunov; Alina Akhunova; Olin D. Anderson; James A. Anderson; N. K. Blake; Michael T. Clegg; Devin Coleman-Derr; E. J. Conley; C. C. Crossman; Jorge Dubcovsky; Bikram S. Gill; Yong Qiang Gu; J. Hadam; Hwa-Young Heo; Naxin HuoN. Huo; Gerard R. Lazo; Yaqin Ma; Dwight E. Matthews; Patrick E. McGuire; Peter L. Morrell; Calvin O. Qualset; J. Renfro; Dindo Tabanao; L. E. Talbert; C. Tian; D. M. Toleno; Marilyn L. Warburton; F. M. You

Single-nucleotide polymorphism was used in the construction of an expressed sequence tag map of Aegilops tauschii, the diploid source of the wheat D genome. Comparisons of the map with the rice and sorghum genome sequences revealed 50 inversions and translocations; 2, 8, and 40 were assigned respectively to the rice, sorghum, and Ae. tauschii lineages, showing greatly accelerated genome evolution in the large Triticeae genomes. The reduction of the basic chromosome number from 12 to 7 in the Triticeae has taken place by a process during which an entire chromosome is inserted by its telomeres into a break in the centromeric region of another chromosome. The original centromere–telomere polarity of the chromosome arms is maintained in the new chromosome. An intrachromosomal telomere–telomere fusion resulting in a pericentric translocation of a chromosome segment or an entire arm accompanied or preceded the chromosome insertion in some instances. Insertional dysploidy has been recorded in three grass subfamilies and appears to be the dominant mechanism of basic chromosome number reduction in grasses. A total of 64% and 66% of Ae. tauschii genes were syntenic with sorghum and rice genes, respectively. Synteny was reduced in the vicinity of the termini of modern Ae. tauschii chromosomes but not in the vicinity of the ancient termini embedded in the Ae. tauschii chromosomes, suggesting that the dependence of synteny erosion on gene location along the centromere–telomere axis either evolved recently in the Triticeae phylogenetic lineage or its evolution was recently accelerated.


Theoretical and Applied Genetics | 1999

Conversion of AFLP markers to sequence-specific PCR markers in barley and wheat

X. Shan; Tom Blake; L. E. Talbert

Abstract Conversion of amplified fragment length polymorphisms (AFLPs) to sequence-specific PCR primers would be useful for many genetic-linkage applications. We examined 21 wheat nullitetrasomic stocks and five wheat-barley addition lines using 12 and 14 AFLP primer combinations, respectively. On average, 36.8% of the scored AFLP fragments in the wheat nullitetrasomic stocks and 22.3% in the wheat-barley addition lines could be mapped to specific chromosomes, providing approximately 461 chromosome-specific AFLP markers in the wheat nullitetrasomic stocks and 174 in the wheat-barley addition lines. Ten AFLP fragments specific to barley chromosomes and 16 AFLP fragments specific to wheat 3BS and 4BS chromosome arms were isolated from the polyacrylamide gels, re-amplified, cloned and sequenced. Primer sets were designed from these sequences. Amplification of wheat and barley genomic DNA using the barley derived primers revealed that three primer sets amplified DNA from the expected chromosome, five amplified fragments from all barley chromosomes but not from wheat, one amplified a similar-sized fragment from multiple barley chromosomes and from wheat, and one gave no amplification. Amplification of wheat genomic DNA using the wheat-derived primer sets revealed that three primer sets amplified a fragment from the expected chromosome, 11 primer sets amplified a similar-sized fragment from multiple chromosomes, and two gave no amplification. These experiments indicate that polymorphisms identified by AFLP are often not transferable to more sequence-specific PCR applications.


BMC Genomics | 2010

Population- and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat (Triticum aestivum L.).

Shiaoman Chao; Jorge Dubcovsky; Jan Dvorak; Ming-Cheng Luo; Rustam Matnyazov; Dale R. Clark; L. E. Talbert; James A. Anderson; Susanne Dreisigacker; Karl D. Glover; Jianli Chen; Kim Garland Campbell; Phil L. Bruckner; Jackie C. Rudd; Scott D. Haley; Brett F. Carver; Sid Perry; Mark E. Sorrells; Eduard Akhunov

BackgroundSingle nucleotide polymorphisms (SNPs) are ideally suited for the construction of high-resolution genetic maps, studying population evolutionary history and performing genome-wide association mapping experiments. Here, we used a genome-wide set of 1536 SNPs to study linkage disequilibrium (LD) and population structure in a panel of 478 spring and winter wheat cultivars (Triticum aestivum) from 17 populations across the United States and Mexico.ResultsMost of the wheat oligo pool assay (OPA) SNPs that were polymorphic within the complete set of 478 cultivars were also polymorphic in all subpopulations. Higher levels of genetic differentiation were observed among wheat lines within populations than among populations. A total of nine genetically distinct clusters were identified, suggesting that some of the pre-defined populations shared significant proportion of genetic ancestry. Estimates of population structure (FST) at individual loci showed a high level of heterogeneity across the genome. In addition, seven genomic regions with elevated FST were detected between the spring and winter wheat populations. Some of these regions overlapped with previously mapped flowering time QTL. Across all populations, the highest extent of significant LD was observed in the wheat D-genome, followed by lower LD in the A- and B-genomes. The differences in the extent of LD among populations and genomes were mostly driven by differences in long-range LD ( > 10 cM).ConclusionsGenome- and population-specific patterns of genetic differentiation and LD were discovered in the populations of wheat cultivars from different geographic regions. Our study demonstrated that the estimates of population structure between spring and winter wheat lines can identify genomic regions harboring candidate genes involved in the regulation of growth habit. Variation in LD suggests that breeding and selection had a different impact on each wheat genome both within and among populations. The higher extent of LD in the wheat D-genome versus the A- and B-genomes likely reflects the episodes of recent introgression and population bottleneck accompanying the origin of hexaploid wheat. The assessment of LD and population structure in this assembled panel of diverse lines provides critical information for the development of genetic resources for genome-wide association mapping of agronomically important traits in wheat.


Theoretical and Applied Genetics | 1994

Evaluation of "sequence-tagged-site" PCR products as molecular markers in wheat.

L. E. Talbert; N. K. Blake; P.W. Chee; Tom Blake; G.M. Magyar

The polymerase chain reaction (PCR) is an attractive technique for many genome mapping and characterization projects. One PCR approach which has been evaluated involves the use of randomly amplified polymorphic DNA (RAPD). An alternative to RAPDs is the sequence-tagged-site (STS) approach, whereby PCR primers are designed from mapped low-copy-number sequences. In this study, we sequenced and designed primers from 22 wheat RFLP clones in addition to testing 15 primer sets that had been previously used to amplify DNA sequences in the barley genome. Our results indicated that most of the primers amplified sequences that mapped to the expected chromosomes in wheat. Additionally, 9 of 16 primer sets tested revealed polymorphisms among 20 hexaploid wheat genotypes when PCR products were digested with restriction enzymes. These results suggest that the STS-based PCR analysis will be useful for generation of informative molecular markers in hexaploid wheat.


BMC Genomics | 2010

Nucleotide diversity maps reveal variation in diversity among wheat genomes and chromosomes.

Eduard D. Akhunov; Alina Akhunova; Olin D. Anderson; James A. Anderson; N. K. Blake; Michael T. Clegg; Devin Coleman-Derr; Emily J. Conley; Curt Crossman; Karin R. Deal; Jorge Dubcovsky; Bikram S. Gill; Yong Q. Gu; Jakub Hadam; Hwa-Young Heo; Naxin Huo; Gerard R. Lazo; Ming-Cheng Luo; Yaqin Q. Ma; David E. Matthews; Patrick E. McGuire; Peter L. Morrell; Calvin O. Qualset; James Renfro; Dindo Tabanao; L. E. Talbert; Chao Tian; Donna M. Toleno; Marilyn L. Warburton; Frank M. You

BackgroundA genome-wide assessment of nucleotide diversity in a polyploid species must minimize the inclusion of homoeologous sequences into diversity estimates and reliably allocate individual haplotypes into their respective genomes. The same requirements complicate the development and deployment of single nucleotide polymorphism (SNP) markers in polyploid species. We report here a strategy that satisfies these requirements and deploy it in the sequencing of genes in cultivated hexaploid wheat (Triticum aestivum, genomes AABBDD) and wild tetraploid wheat (Triticum turgidum ssp. dicoccoides, genomes AABB) from the putative site of wheat domestication in Turkey. Data are used to assess the distribution of diversity among and within wheat genomes and to develop a panel of SNP markers for polyploid wheat.ResultsNucleotide diversity was estimated in 2114 wheat genes and was similar between the A and B genomes and reduced in the D genome. Within a genome, diversity was diminished on some chromosomes. Low diversity was always accompanied by an excess of rare alleles. A total of 5,471 SNPs was discovered in 1791 wheat genes. Totals of 1,271, 1,218, and 2,203 SNPs were discovered in 488, 463, and 641 genes of wheat putative diploid ancestors, T. urartu, Aegilops speltoides, and Ae. tauschii, respectively. A public database containing genome-specific primers, SNPs, and other information was constructed. A total of 987 genes with nucleotide diversity estimated in one or more of the wheat genomes was placed on an Ae. tauschii genetic map, and the map was superimposed on wheat deletion-bin maps. The agreement between the maps was assessed.ConclusionsIn a young polyploid, exemplified by T. aestivum, ancestral species are the primary source of genetic diversity. Low effective recombination due to self-pollination and a genetic mechanism precluding homoeologous chromosome pairing during polyploid meiosis can lead to the loss of diversity from large chromosomal regions. The net effect of these factors in T. aestivum is large variation in diversity among genomes and chromosomes, which impacts the development of SNP markers and their practical utility. Accumulation of new mutations in older polyploid species, such as wild emmer, results in increased diversity and its more uniform distribution across the genome.


Genome Biology | 2015

A haplotype map of allohexaploid wheat reveals distinct patterns of selection on homoeologous genomes.

Katherine W. Jordan; Shichen Wang; Yanni Lun; Laura-Jayne Gardiner; Ron MacLachlan; Pierre Hucl; Krysta Wiebe; Debbie Wong; Kerrie L. Forrest; Andrew G. Sharpe; Christine Sidebottom; Neil Hall; Christopher Toomajian; Timothy J. Close; Jorge Dubcovsky; Alina Akhunova; L. E. Talbert; Urmil Bansal; Harbans Bariana; Matthew J. Hayden; Curtis J. Pozniak; Jeffrey A. Jeddeloh; Anthony Hall; Eduard Akhunov

BackgroundBread wheat is an allopolyploid species with a large, highly repetitive genome. To investigate the impact of selection on variants distributed among homoeologous wheat genomes and to build a foundation for understanding genotype-phenotype relationships, we performed population-scale re-sequencing of a diverse panel of wheat lines.ResultsA sample of 62 diverse lines was re-sequenced using the whole exome capture and genotyping-by-sequencing approaches. We describe the allele frequency, functional significance, and chromosomal distribution of 1.57 million single nucleotide polymorphisms and 161,719 small indels. Our results suggest that duplicated homoeologous genes are under purifying selection. We find contrasting patterns of variation and inter-variant associations among wheat genomes; this, in addition to demographic factors, could be explained by differences in the effect of directional selection on duplicated homoeologs. Only a small fraction of the homoeologous regions harboring selected variants overlapped among the wheat genomes in any given wheat line. These selected regions are enriched for loci associated with agronomic traits detected in genome-wide association studies.ConclusionsEvidence suggests that directional selection in allopolyploids rarely acted on multiple parallel advantageous mutations across homoeologous regions, likely indicating that a fitness benefit could be obtained by a mutation at any one of the homoeologs. Additional advantageous variants in other homoelogs probably either contributed little benefit, or were unavailable in populations subjected to directional selection. We hypothesize that allopolyploidy may have increased the likelihood of beneficial allele recovery by broadening the set of possible selection targets.


Theoretical and Applied Genetics | 1996

STS-PCR markers appropriate for wheat-barley introgression

Tom Blake; D. Kadyrzhanova; K. W. Shepherd; A. K. M. R. Islam; Peter Langridge; C. McDonald; J. Erpelding; S. R. Larson; N. K. Blake; L. E. Talbert

Introgression of chromosomal segments across large taxonomic distances has long been an objective of scientists interested in understanding the relationships between genes and their effect on phenotype. Barley and wheat represent cultivated members of the Triticeae with different zones of adaptation, different responses to pathogens, and different end-use characteristics. Introduction of small, well-characterized chromosomal segments among grass relatives presents an opportunity to both better understand how genes perform in novel genomic environments and to learn more about the evolutionary novelties which differentiate related species. Since the distribution of the wheat-barley addition lines, the potential power and value of a comprehensive series of wheat/barley translocation lines has been widely appreciated. A scarcity of easy-touse markers which unambiguously distinguish barley loci from their wheat homologues has limited the ability of scientists to identify the relatively rare inter-chromosomal recombination events which are the necessary antecedents of these lines. Since the single most critical pathogen affecting U.S. wheat producers is Karnal bunt (Tilletia indica) and since barley carries a gene conferring immunity, molecular markers may prove practically and immediately important. In this report we describe a series of 135 barley-specific markers amplified by 115 primer sets developed from sequences from previously mapped restriction fragment length polymorphism (RFLP) markers. These easily distinguish the cognate barley products from their wheat counterparts and should find ready use in the identification of lines which contain wheat/barley translocation events.


Theoretical and Applied Genetics | 1996

Development of PCR markers linked to resistance to wheat streak mosaic virus in wheat.

L. E. Talbert; P. L. Bruckner; L. Y. Smith; R. Sears; T. J. Martin

Wheat streak mosaic virus (WSMV), vectored by the wheat curl mite (Acer tulipae), is an important disease of wheat (Triticum aestivum L.) in the North American Great Plains. Resistant varieties have not been developed for two primary reasons. First, useful sources of resistance have not been available, and second, field screening for virus resistance is laborious and beyond the scope of most breeding programs. The first problem may have been overcome by the development of resistance to both the mite and the virus by the introgression of resistance genes from wild relatives of wheat. To help address the second problem, we have developed polymerase chain reaction (PCR) markers linked to the WSMV resistance gene Wsm1. Wsm1 is contained on a translocated segment from Agropyron intermedium. One sequence-tagged-site (STS) primer set (WG232) and one RAPD marker were found to be linked to the translocation containing Wsm1. The diagnostic RAPD band was cloned and sequenced to allow the design of specific PCR primers. The PCR primers should be useful for transferring Wsm1 into locally adapted cultivars.

Collaboration


Dive into the L. E. Talbert's collaboration.

Top Co-Authors

Avatar

S. P. Lanning

Montana State University

View shared research outputs
Top Co-Authors

Avatar

N. K. Blake

Montana State University

View shared research outputs
Top Co-Authors

Avatar

J. M. Martin

Montana State University

View shared research outputs
Top Co-Authors

Avatar

J. D. Sherman

Montana State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. R. Carlson

Montana State University

View shared research outputs
Top Co-Authors

Avatar

Hwa-Young Heo

Montana State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. D. Kephart

Montana State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge