Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where L.G. Eliseev is active.

Publication


Featured researches published by L.G. Eliseev.


Plasma Physics and Controlled Fusion | 2006

Investigation of geodesic acoustic mode oscillations in the T-10 tokamak

A. V. Melnikov; V.A. Vershkov; L.G. Eliseev; S.A. Grashin; A V Gudozhnik; L I Krupnik; S.E. Lysenko; V A Mavrin; S. Perfilov; D. A. Shelukhin; S V Soldatov; M V Ufimtsev; A. O. Urazbaev; G. Van Oost; L G Zimeleva

Geodesic acoustic modes (GAMs) were investigated on the T-10 tokamak using heavy ion beam probe, correlation reflectometry and multipin Langmuir probe diagnostics. Regimes with Ohmic heating and with on- and off-axis ECRH were studied. It was shown that GAMs are mainly the potential oscillations. Typically, the power spectrum of the oscillations has the form of a solitary quasi-monochromatic peak with the contrast range 3–5. They are the manifestation of the torsional plasma oscillations with poloidal wavenumber m = 0, called zonal flows. The frequency of GAMs changes in the region of observation and decreases towards the plasma edge. After ECRH switch-on, the frequency increases, correlating with growth in the electron temperature Te. The frequency of the GAMs depends on the local Te as , which is consistent with a theoretical scaling for GAM, where cs is the sound speed within a factor of unity. The GAMs on T-10 are found to have density limit, some magnetic components and an intermittent character. They tend to be more excited near low-q magnetic surfaces.


Plasma Physics and Controlled Fusion | 2003

Turbulent transport reduction by E×B velocity shear during edge plasma biasing: recent experimental results

G. Van Oost; J. Adamek; V. Antoni; P. Balan; J.A. Boedo; P. Devynck; I. Duran; L.G. Eliseev; J. Gunn; M. Hron; C. Ionita; S. Jachmich; G. Kirnev; E. Martines; A. V. Melnikov; R. Schrittwieser; C. Silva; J. Stöckel; M. Tendler; C.A.F. Varandas; M. Van Schoor; V.A. Vershkov; R.R. Weynants

Experiments in the tokamaks TEXTOR, CASTOR, T-10 and ISTTOK, as well as in the reversed field pinch RFX have provided new and complementary evidence on the physics of the universal mechanism of E×B velocity shear stabilization of turbulence, concomitant transport barrier formation and radial conductivity by using various edge biasing techniques. In TEXTOR the causality between transport reduction and induced electric fields in the edge has been for the first time clearly demonstrated. The high electric field gradients have been identified as the cause for the quenching of turbulent cells. A quantitative analysis of the measured transport reduction is in good agreement with theoretical predictions. The scaling of plasma turbulence suppression with velocity shear has been established, revealing the density-potential cross-phase as a key element. Reduction in poloidal electric field, temperature, and density fluctuations across the shear layer lead to a reduction of the anomalous conducted and convected heat fluxes resulting in an energy transport barrier that is measured directly. In CASTOR the biasing electrode is placed at the separatrix in a non-intrusive configuration which has demonstrated strongly sheared electric fields and consequent improvement of the global particle confinement, as predicted by theory. The impact of sheared E×B flow on edge turbulent structures has been measured directly using a comprehensive set of electrostatic probe arrays as well as emissive probes. Measurements with a full poloidal Langmuir probe array have revealed quasi-coherent electrostatic waves in the SOL with a dominant mode number equal to the edge safety factor. In T-10 edge biasing is clearly improving the global performance of ECR heated discharges. Reflectometry and heavy ion beam probe measurements show the existence of a narrow plasma layer with strong suppression of turbulence. On ISTTOK, the influence of alternating positive and negative electrode and (non-intrusive) limiter biasing has been compared. Electrode biasing is found to be more efficient in modifying the radial electric field Er and confinement, limiter biasing acting mainly on the SOL. In the RFX reversed field pinch it has been demonstrated that also in RFPs biasing can increase the local E×B velocity shear in the edge region, and hence substantially reduce the local turbulence driven particle flux mainly due to a change in the relative phase between potential and density fluctuations.


Plasma Physics and Controlled Fusion | 2009

Sheared flows and transition to improved confinement regime in the TJ-II stellarator

T. Estrada; T. Happel; L.G. Eliseev; D. López-Bruna; E. Ascasíbar; E. Blanco; L Cupido; J. M. Fontdecaba; C. Hidalgo; R. Jiménez-Gómez; L.I. Krupnik; M. Liniers; M. E. Manso; K. J. McCarthy; F. Medina; A. V. Melnikov; B. van Milligen; M. A. Ochando; I. Pastor; M. A. Pedrosa; F. Tabarés; D. Tafalla; Tj-Ii Team

Sheared flows have been experimentally studied in TJ-II plasmas. In lowdensity ECH plasmas, sheared flows can be easily controlled by changing the plasma density, thereby allowing the radial origin and evolution of the edge velocity shear layer to be studied. In high density NBI heated plasmas a negative radial electric field is observed that is dominated by the diamagnetic component. The shear of the negative radial electric field increases at the L‐H transition by an amount that depends on the magnetic configuration and heating power. Magnetic configurations with and without a low order rational surface close to the plasma edge show differences that may be interpreted in terms of local changes in the radial electric field induced by the rational surface that could facilitate the L‐H transition. Fluctuation measurements show a reduction in the turbulence level that is strongest at the position of maximum Er shear. High temporal and spatial resolution measurements indicate that turbulence reduction precedes the increase in the mean sheared flow, but is simultaneous with the increase in the low frequency oscillating sheared flow. These observations may be interpreted in terms of turbulence suppression by oscillating flows, the so-called zonal flows. (Some figures in this article are in colour only in the electronic version)


Nuclear Fusion | 2011

Plasma potential and turbulence dynamics in toroidal devices (survey of T-10 and TJ-II experiments)

A. V. Melnikov; C. Hidalgo; L.G. Eliseev; E. Ascasíbar; A.A. Chmyga; K.S. Dyabilin; I.A. Krasilnikov; V.A. Krupin; L.I. Krupnik; S. M. Khrebtov; A.D. Komarov; A.S. Kozachek; D. López-Bruna; S.E. Lysenko; V.A. Mavrin; J.L. de Pablos; I. Pastor; S. Perfilov; M. A. Pedrosa; R.V. Shurygin; V.A. Vershkov; T Team; Tj-Ii Team

A direct comparison of the electric potential and its fluctuations in the T-10 tokamak and the TJ-II stellarator is presented for similar plasma conditions in the two machines, using the heavy ion beam probe diagnostic. We observed the following similarities: (i) plasma potentials of several hundred volts, resulting in a radial electric field Er of several tens of V?cm?1; (ii) a negative sign for the plasma potential at central line-averaged electron densities larger than 1\times 10^{19}\,{\rm m}^{-3} SRC=http://ej.iop.org/images/0029-5515/51/8/083043/nf381326in001.gif/>, with comparable values in both machines, even when using different heating methods; (iii) with increasing electron density ne or energy confinement time ?E, the potential evolves in the negative direction; (iv) with electron cyclotron resonance heating and associated increase in the electron temperature Te, ?E degrades and the plasma potential evolves in the positive direction. We generally find that the more negative potential and Er values correspond to higher values of ?E. Modelling indicates that basic neoclassical mechanisms contribute significantly to the formation of the electric potential in the core. Broadband turbulence is suppressed at spontaneous and biased transitions to improved confinement regimes and is always accompanied by characteristic changes in plasma potential profiles. Various types of quasi-coherent potential oscillations are observed, among them geodesic acoustic modes in T-10 and Alfv?n eigenmodes in TJ-II.


Nuclear Fusion | 2010

Internal measurements of Alfvén eigenmodes with heavy ion beam probing in toroidal plasmas

A. V. Melnikov; L.G. Eliseev; R. Jiménez-Gómez; E. Ascasíbar; C. Hidalgo; A.A. Chmyga; A.D. Komarov; A. S. Kozachok; I.A. Krasilnikov; S. M. Khrebtov; L.I. Krupnik; M. Liniers; S.E. Lysenko; V.A. Mavrin; J.L. de Pablos; M. A. Pedrosa; S. Perfilov; M.V. Ufimtsev; T. Ido; K. Nagaoka; S. Yamamoto; Yu.I. Taschev; A.I. Zhezhera; A. I. Smolyakov

Energetic ion driven Alfven eigenmodes (AEs) are believed to be an important element disturbing the transport in a future fusion reactor. The studies of the AE properties in modern toroidal devices have made crucial contributions to the reactor relevant physics. AEs are conventionally studied by magnetic probes (MPs), which provide the poloidal m and toroidal n mode numbers and their spectral characteristics. Heavy ion beam probing (HIBP) has become a new tool to study AEs with high spatial and frequency resolution. HIBP in the TJ-II heliac observes locally (~1 cm) resolved AEs over the whole radial interval. The set of low-m (m < 8) modes, detected with the high-frequency resolution (<5 kHz), present different types of AEs. AEs are pronounced in the local density, electric potential and poloidal magnetic field oscillations, detected simultaneously by HIBP in the frequency range 50 kHz < fAE < 300 kHz. Various AE modes are visible in the neutral beam injector (NBI)-heated plasma for co-NBI (<450 kW), counter- (<450 kW) and balanced NBI (<900 kW) from the plasma centre to the edge. A high coherence between MP and HIBP data was found for specific AEs. When the density rises, AE frequency decreases, , and the cross-phase between the plasma density, poloidal magnetic field and potential remains constant. The amplitude of the AE potential oscillations δAE ~ 10 V was estimated. Poloidally resolved density and potential measurements may provide information about the AE poloidal wavelength and the AE contribution to the poloidal electric field Epol and the turbulent particle flux ΓE×B. The typical range of Epol oscillations for AEs is . Depending on the δne and δEpol amplitudes and cross-phase, AEs may make a small or a significant contribution to the turbulent particle flux ΓE×B for the observed wavenumbers kθ < 3 cm−1.


Plasma Physics and Controlled Fusion | 2004

Electron internal transport barrier formation and dynamics in the plasma core of the TJ-II stellarator

T. Estrada; L.I. Krupnik; N. B. Dreval; A. V. Melnikov; S. M. Khrebtov; C. Hidalgo; B. van Milligen; F. Castejón; E. Ascasíbar; L.G. Eliseev; A.A. Chmyga; A.D. Komarov; A. S. Kozachok; V. Tereshin

The influence of magnetic topology on the formation of electron internal transport barriers (e-ITBs) has been studied experimentally in electron cyclotron heated plasmas in the stellarator TJ-II. e-ITB formation is characterized by an increase in core electron temperature and plasma potential. The positive radial electric field increases by a factor of 3 in the central plasma region when an e-ITB forms. The experiments reported demonstrate that the formation of an e-ITB depends on the magnetic configuration. Calculations of the modification of the rotational transform due to plasma current lead to the interpretation that the formation of an e-ITB can be triggered by positioning a low order rational surface close to the plasma core region. In configurations without any central low order rational, no barrier is formed for any accessible value of heating power. Different mechanisms associated with neoclassical/turbulent bifurcations and kinetic effects are put forward to explain the impact of magnetic topology on radial electric fields and confinement.


Nuclear Fusion | 2015

The features of the global GAM in OH and ECRH plasmas in the T-10 tokamak

A.V. Melnikov; L.G. Eliseev; S. Perfilov; S.E. Lysenko; R.V. Shurygin; V.N. Zenin; S.A. Grashin; L.I. Krupnik; A.S. Kozachek; R.Yu. Solomatin; A. G. Elfimov; A. I. Smolyakov; M.V. Ufimtsev

Zonal flows and their high-frequency counterpart, the geodesic acoustic modes (GAMs) are considered as a possible mechanism of the plasma turbulence self-regulation. In the T-10 tokamak GAMs have been studied by the heavy ion beam probing and multipin Langmuir probes. The wide range of the regimes with Ohmic, on-axis and off-axis electron cyclotron resonance heating (ECRH) were studied (Bt = 1.5–2.4 T, Ip = 140–300 kA, , PEC < 1.2 MW). It was shown that GAM has radially homogeneous structure and poloidal m = 0 for potential perturbations. The local theory predicts that , that means the frequency increases with the decrease of the minor radius. In contrast, the radial distribution of experimental frequency of the plasma potential and density oscillations, associated to GAM, is almost uniform over the whole plasma radius, suggesting the features of the nonlocal (global) eigenmodes. The GAM amplitude in the plasma potential also tends to be uniform along the radius. GAMs are more pronounced during ECRH, when the typical frequencies are seen in the narrow band from 22 to 27 kHz for the main peak and 25–30 kHz for the higher frequency satellite. GAM characteristics and the range of GAM existence are presented as functions of Te, density, magnetic field and PEC.


Fusion Science and Technology | 2007

Plasma Potential Evolution Study by HIBP Diagnostic During NBI Experiments in the TJ-II Stellarator

A. V. Melnikov; A. Alonso; E. Ascasíbar; R. Balbin; A.A. Chmyga; Yu. N. Dnestrovskij; L.G. Eliseev; T. Estrada; Josep María Fontdecaba; C. Fuentes; Joan J. Muntaner Guasp; J. Herranz; C. Hidalgo; A.D. Komarov; A.S. Kozachek; L.I. Krupnik; M. Liniers; S.E. Lysenko; K.J. McCarthy; M. A. Ochando; I. Pastor; J. L. De Pablos; M. A. Pedrosa; S. Perfilov; S. Ya. Petrov; V. Tereshin

Abstract The heavy ion beam probe diagnostic is used in the TJ-II stellarator to study directly the plasma electric potential with good spatial (up to 1 cm) and temporal (up to 2 μs) resolution. Singly charged heavy ions, Cs+, with energies of up to 125 keV are used to probe the plasma column from the edge to the core. Both electron cyclotron resonance heating (ECRH) and neutral beam injection (NBI)-heated plasmas (PECRH = 200 to 400 kW, PNBI = 200 to 400 kW, ENBI = 28 keV) have been studied. Low-density ECRH [[over bar]n = (0.5 to 1.1) × 1019 m-3] plasmas in TJ-II are characterized by positive plasma potential on the order of 1000 to 400 V. A negative electric potential appears at the edge when the line-averaged density exceeds 0.5 × 1019 m-3. Further density rises are accompanied by a decrease in the core plasma potential, which becomes fully negative for plasma densities [over bar]n ≥ 1.5 × 1019 m-3. The NBI plasmas are characterized by a negative electric potential across the whole plasma cross section from the core to the edge. In this case, the absolute value of the central potential is on the order of -500 V. These results show a clear link between plasma potential and density in the TJ-II stellarator.


Czechoslovak Journal of Physics | 2005

Investigation of the plasma potential oscillations in the range of geodesic acoustic mode frequencies by heavy ion beam probing in tokamaks

A. V. Melnikov; L.G. Eliseev; A. V. Gudozhnik; S.E. Lysenko; V. A. Mavrin; S. Perfilov; L. G. Zimeleva; M.V. Ufimtsev; L.I. Krupnik; P. M. Schoch

Specific oscillations within a range of 20 kHz (“20 kHz-mode”) were investigated on the T-10 and TEXT tokamaks using Heavy Ion Beam Probe (HIBP) diagnostic. Regimes with ohmic heating on both machines, and with off-axis ECRH in T-10 were studied. It was shown that “20 kHz-modes are mainly the potential oscillations. The power spectrum of the oscillations has the form of a solitary quasi-monochromatic peak with a contrast range of (3–5). They are the manifestation of torsional plasma oscillations with poloidal wavenumber m = 0, called zonal flows. It was shown that in TEXT the radial electric field oscillations exist in a limited radial range of 0.65 > ρ < 0.95. The frequency of “20 kHz-mode” is varied in the region of observation; it diminishes to the plasma edge. In T-10, after ECRH switch-on, the frequency increases, correlating with the growth of the electron temperature Te. In both machines the frequency of the “20 kHz-mode” varies with local Te: f ∼ Te1/2, which is consistent with theoretical scaling for geodesic acoustic modes (GAM): fGAM ∼ cs/R ∼ Te1/2, where cs is the speed of sound. The absolute frequencies are close to GAM values within a factor of unity.


Fusion Science and Technology | 2004

Plasma Potential Measurements by the Heavy Ion Beam Probe Diagnostic in Fusion Plasmas: Biasing Experiments in the TJ-II Stellarator and T-10 Tokamak

A. V. Melnikov; C. Hidalgo; A.A. Chmyga; N. B. Dreval; L.G. Eliseev; S. M. Khrebtov; A.D. Komarov; A. S. Kozachok; L. I. Krupnik; I. Pastor; M. A. Pedrosa; S.V. Perfilov; K.J. McCarthy; M. A. Ochando; G. Van Cost; C. Silva; B. Goncalves; Yu. N. Dnestrovskij; S.E. Lysenko; M. V. Ufimtsev; V. I. Tereshin

Abstract The effect of edge biasing on plasma potential was investigated in the TJ-II stellarator and the T-10 tokamak. The Heavy Ion Beam Probe (HIBP) diagnostic, a unique tool for studying the core potential directly, was used in both machines. Experiments in TJ-II show that it is possible to modify the global confinement and edge plasma parameters with limiter biasing, illustrating the direct impact of radial electric fields on TJ-II confinement properties. For the first time it was shown that the plasma column in a stellarator can be charged as a whole for a hot, near-reactor-relevant plasma. The plasma potential and electric fields evolve on two different characteristic time scales. Although the experimental conditions in the two machines have many important differences, the basic features of plasma potential behavior have some similarities: The potential response has the same polarity and scale as the biasing voltage, and the fluctuations are suppressed near the electrode/limiter region. However, whereas both edge and core plasma potential are affected by biasing in TJ-II, the potential changes mainly near the biased electrode in T-10.

Collaboration


Dive into the L.G. Eliseev's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

L.I. Krupnik

Kharkov Institute of Physics and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J.L. de Pablos

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. M. Khrebtov

Kharkov Institute of Physics and Technology

View shared research outputs
Top Co-Authors

Avatar

M.V. Ufimtsev

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar

N. B. Dreval

Kharkov Institute of Physics and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge