Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where L. G. Huey is active.

Publication


Featured researches published by L. G. Huey.


Journal of Geophysical Research | 1999

Design and initial characterization of an inlet for gas‐phase NOy measurements from aircraft

T. B. Ryerson; L. G. Huey; K. Knapp; J. A. Neuman; D. D. Parrish; Donna Sueper; F. C. Fehsenfeld

An understanding of gas-phase HNO3 transmission through an inlet is necessary to evaluate the quality of NOy measurements from an aircraft platform. A simple, inexpensive, low-volume Teflon inlet is described and its suitability as an aircraft inlet for gas-phase NOy is assessed. Aerosol transmission is not characterized, but inlet design and orientation probably discriminates against the majority of aerosol by mass. Laboratory data, in-flight HNO3 standard addition calibrations, and ambient NOy measurements from the 1997 North Atlantic Regional Experiment aircraft mission are used to characterize inlet transmission efficiencies and time constants. Laboratory tests show high transmission efficiencies for HNO3 which are relatively independent of ambient temperature and humidity. In-flight standard addition calibrations were carried out at ambient temperatures ranging from −20° to +8°C and relative humidities from 3% to 71%. These data suggest that nearly all the sampled air contacts an inlet surface, with 90% of added HNO3 being transmitted in ∼1.5 s. Ambient data are presented to demonstrate negligible hysteresis in 1-Hz NOy measurements, relative to variability observed in ozone data, from an air mass where HNO3 is expected to be a large fraction of the total NOy. Power spectra of ambient NOy (at temperatures from −35° to +35°C and relative humidities from 3% to 100%) and ozone measurements suggest an effective NOy instrument time constant of ∼2 s.


Journal of Geophysical Research | 2006

Eddy covariance fluxes of peroxyacetyl nitrates (PANs) and NOy to a coniferous forest

Andrew A. Turnipseed; L. G. Huey; E. Nemitz; Robert E. Stickel; J. Higgs; David J. Tanner; D. L. Slusher; Jed P. Sparks; F. Flocke; Alex Guenther

up to approximately � 14 ng N m � 2 s � 1 . The average daytime flux peaked at � 6.0 ng N m � 2 s � 1 and accounted for � 20% of the daytime NOy flux. Calculations suggest minimum daytime surface resistances for PAN in the range of 70–130 s m � 1 .I t was estimated that approximately half of daytime uptake was through plant stomates. Average PAN deposition velocities, Vd(PAN), showed a daytime maximum of � 10.0 mm s � 1 ; however, deposition did not cease during nighttime periods. Vd(PAN) was highly variable at night and increased when canopy elements were wet from either precipitation or dew formation. Diel patterns of deposition velocity of MPAN and PPN were similar to that of PAN. These results suggest that deposition of PAN, at least to coniferous forest canopies, is much faster than predicted with current deposition algorithms. Although deposition of PAN is unlikely to compete with thermal dissociation during warm summer periods, it will likely play an important role in removing PAN from the atmosphere in colder regions or during winter. The fate of PAN at the surface and within the plants remains unknown, but may present a previously ignored source of nitrogen to ecosystems.


Journal of Geophysical Research | 2010

Biogenic emission measurement and inventories determination of biogenic emissions in the eastern United States and Texas and comparison with biogenic emission inventories

Carsten Warneke; J. A. de Gouw; L. A. Del Negro; J. Brioude; S. A. McKeen; Harald Stark; William C. Kuster; Paul D. Goldan; M. Trainer; F. C. Fehsenfeld; Christine Wiedinmyer; Alex Guenther; Armin Hansel; Armin Wisthaler; E. Atlas; John S. Holloway; T. B. Ryerson; J. Peischl; L. G. Huey; A. T. Case Hanks

During the NOAA Southern Oxidant Study 1999 (SOS1999), Texas Air Quality Study 2000 (TexAQS2000), International Consortium for Atmospheric Research on Transport and Transformation (ICARTT2004), and Texas Air Quality Study 2006 (TexAQS2006) campaigns, airborne measurements of isoprene and monoterpenes were made in the eastern United States and in Texas, and the results are used to evaluate the biogenic emission inventories BEIS3.12, BEIS3.13, MEGAN2, and WM2001. Two methods are used for the evaluation. First, the emissions are directly estimated from the ambient isoprene and monoterpene measurements assuming a well-mixed boundary layer and are compared with the emissions from the inventories extracted along the flight tracks. Second, BEIS3.12 is incorporated into the detailed transport model FLEXPART, which allows the isoprene and monoterpene mixing ratios to be calculated and compared to the measurements. The overall agreement for all inventories is within a factor of 2 and the two methods give consistent results. MEGAN2 is in most cases higher, and BEIS3.12 and BEIS3.13 lower than the emissions determined from the measurements. Regions with clear discrepancies are identified. For example, an isoprene hot spot to the northwest of Houston, Texas, was expected from BEIS3 but not observed in the measurements. Interannual differences in emissions of about a factor of 2 were observed in Texas between 2000 and 2006. Copyright 2010 by the American Geophysical Union.


Environmental Science & Technology | 2011

Ambient pressure proton transfer mass spectrometry: detection of amines and ammonia.

David R. Hanson; Peter H. McMurry; Jingkun Jiang; David J. Tanner; L. G. Huey

An instrument to detect gaseous amines and ammonia is described, and representative data from an urban site and a laboratory setting are presented. The instrument, an Ambient pressure Proton transfer Mass Spectrometer (AmPMS), consists of a chemical ionization and drift region at atmospheric pressure coupled to a standard quadrupole mass spectrometer. Calibrations show that AmPMS sensitivity is good for amines, and AmPMS backgrounds were suitably determined by diverting sampled air through a catalytic converter. In urban air at a site in Atlanta, amines were detected at subpptv levels for methyl and dimethyl amine which were generally at a low abundance of <1 and ∼3 pptv, respectively. Trimethyl amine (or isomers) was on average about 4 pptv in the morning and increased to 15 pptv in the afternoon, while triethyl amine (or isomers or amides) increased to 25 pptv on average in the late afternoon. The background levels for the 4 and 5 carbon amines and ammonia were high, and data are very limited for these species. Improvements in detecting amines and ammonia from a smog chamber were evident due to improvements in AmPMS background determination; notably dimethyl amine and its OH oxidation products were followed along with impurity ammonia and other species. Future work will focus on accurate calibration standards and on improving the sample gas inlet.


Journal of Geophysical Research | 2004

Multiscale simulations of tropospheric chemistry in the eastern Pacific and on the U.S. West Coast during spring 2002

Youhua Tang; Gregory R. Carmichael; Larry W. Horowitz; Itsushi Uno; Jung-Hun Woo; David G. Streets; Donald Dabdub; Gakuji Kurata; Adrian Sandu; J. D. Allan; Elliot Atlas; F. M. Flocke; L. G. Huey; R. O. Jakoubek; Dylan B. Millet; Patricia K. Quinn; James M. Roberts; Douglas R. Worsnop; Allen H. Goldstein; Stephen George Donnelly; S. Schauffler; V. Stroud; Kristen Johnson; Melody A. Avery; Hanwant B. Singh; Eric C. Apel

[ 1] Regional modeling analysis for the Intercontinental Transport and Chemical Transformation 2002 (ITCT 2K2) experiment over the eastern Pacific and U. S. West Coast is performed using a multiscale modeling system, including the regional tracer model Chemical Weather Forecasting System (CFORS), the Sulfur Transport and Emissions Model 2003 (STEM-2K3) regional chemical transport model, and an off-line coupling with the Model of Ozone and Related Chemical Tracers ( MOZART) global chemical transport model. CO regional tracers calculated online in the CFORS model are used to identify aircraft measurement periods with Asian influences. Asian-influenced air masses measured by the National Oceanic and Atmospheric Administration (NOAA) WP-3 aircraft in this experiment are found to have lower DeltaAcetone/DeltaCO, DeltaMethanol/DeltaCO, and DeltaPropane/DeltaEthyne ratios than air masses influenced by U. S. emissions, reflecting differences in regional emission signals. The Asian air masses in the eastern Pacific are found to usually be well aged (> 5 days), to be highly diffused, and to have low NOy levels. Chemical budget analysis is performed for two flights, and the O-3 net chemical budgets are found to be negative ( net destructive) in the places dominated by Asian influences or clear sites and positive in polluted American air masses. During the trans-Pacific transport, part of gaseous HNO3 was converted to nitrate particle, and this conversion was attributed to NOy decline. Without the aerosol consideration, the model tends to overestimate HNO3 background concentration along the coast region. At the measurement site of Trinidad Head, northern California, high-concentration pollutants are usually associated with calm wind scenarios, implying that the accumulation of local pollutants leads to the high concentration. Seasonal variations are also discussed from April to May for this site. A high-resolution nesting simulation with 12-km horizontal resolution is used to study the WP-3 flight over Los Angeles and surrounding areas. This nested simulation significantly improved the predictions for emitted and secondary generated species. The difference of photochemical behavior between the coarse (60-km) and nesting simulations is discussed and compared with the observation.


Environmental Science & Technology | 2010

Evidence of Reactive Aromatics As a Major Source of Peroxy Acetyl Nitrate over China

Zhen Liu; Yuhang Wang; Dasa Gu; Chun Zhao; L. G. Huey; Robert E. Stickel; Jin Liao; Min Shao; T. Zhu; Limin Zeng; S. C. Liu; Chih-Chung Chang; Antonio Amoroso; Francesa Costabile

We analyze the observations of near-surface peroxy acetyl nitrate (PAN) and its precursors in Beijing, China in August of 2007. The levels of PAN are remarkably high (up to 14 ppbv), surpassing those measured over other urban regions in recent years. Analyses employing a 1-D version of a chemical transport model (Regional chEmical and trAnsport Model, REAM) indicate that aromatic non-methane hydrocarbons (NMHCs) are the dominant (55-75%) PAN source. The major oxidation product of aromatics that produces acetyl peroxy radicals is methylglyoxal (MGLY). PAN and O(3) in the observations are correlated at daytime; aromatic NMHCs appear to play an important role in O(3) photochemistry. Previous NMHC measurements indicate the presence of reactive aromatics at high levels over broad polluted regions of China. Aromatics are often ignored in global and (to a lesser degree) regional 3D photochemical transport models; their emissions over China as well as photochemistry are quite uncertain. Our findings suggest that critical assessments of aromatics emissions and chemistry (such as the yields of MGLY) are necessary to understand and assess ozone photochemistry and regional pollution export in China.


Geophysical Research Letters | 2001

A chemical ionization technique for measurement of pernitric acid in the upper troposphere and the polar boundary layer

D. L. Slusher; Sharon J. Pitteri; B. J. Haman; David J. Tanner; L. G. Huey

The potential of SF 6 - for the detection of pemitric acid in air by chemical ionization mass spectrometry was studied in the laboratory via its reactions with HO 2 NO 2 , O 3 , H 2 O, and NO 2 . Measurements of HO 2 NO 2 using SF 6 ion chemistry were then performed at the South Pole. SF 6 - reacts at the gas kinetic rate with HO 2 NO 2 to form SF 5 - , NO 4 - (HF), NO 2 - (HF), and NO 3 - . The NO 4 - (HF) product provides a unique signature for HO 2 NO 2 . The rate coefficient for this channel is 2.9 x 10 -10 cm 3 molecule -1 s -1 at 16.5 torr in N 2 and decreases as the total pressure increases. NO 4 - (HF) undergoes ligand switching with H 2 O and HO 2 NO 2 , implying the existence of a NO 4 - core ion in the gas phase. SF 6 reacts with H 2 O to produce a large number of product ions that increase nonlinearly with [H 2 O]. This limits the use of SF 6 to regions of the atmosphere with low absolute humidities. However, our lab studies indicate that HO 2 NO 2 can be selectively detected in air with an ozone mixing ratio up to 550 ppbv and a dew point of -25°C or less, which corresponds to regions of the troposphere where HO 2 NO 2 is expected to be thermally stable. We present field data from the South Pole showing typical HO 2 NO 2 mixing ratios of 20 pptv.


Journal of Geophysical Research | 2016

Agricultural fires in the southeastern U.S. during SEAC4RS: Emissions of trace gases and particles and evolution of ozone, reactive nitrogen, and organic aerosol

Xiaoxi Liu; Yuzhong Zhang; L. G. Huey; Robert J. Yokelson; Yang Wang; J. L. Jimenez; Pedro Campuzano-Jost; A. J. Beyersdorf; D. R. Blake; Yonghoon Choi; J. M. St. Clair; John D. Crounse; Douglas A. Day; Glenn S. Diskin; Alan Fried; Samuel R. Hall; T. F. Hanisco; Laura E. King; Simone Meinardi; Tomas Mikoviny; Brett B. Palm; J. Peischl; A. E. Perring; Ilana B. Pollack; T. B. Ryerson; G. W. Sachse; Joshua P. Schwarz; Isobel J. Simpson; David J. Tanner; K. L. Thornhill

Emissions from 15 agricultural fires in the southeastern U.S. were measured from the NASA DC-8 research aircraft during the summer 2013 Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC^4RS) campaign. This study reports a detailed set of emission factors (EFs) for 25 trace gases and 6 fine particle species. The chemical evolution of the primary emissions in seven plumes was examined in detail for ~1.2 h. A Lagrangian plume cross-section model was used to simulate the evolution of ozone (O_3), reactive nitrogen species, and organic aerosol (OA). Observed EFs are generally consistent with previous measurements of crop residue burning, but the fires studied here emitted high amounts of SO_2 and fine particles, especially primary OA and chloride. Filter-based measurements of aerosol light absorption implied that brown carbon (BrC) was ubiquitous in the plumes. In aged plumes, rapid production of O_3, peroxyacetyl nitrate (PAN), and nitrate was observed with ΔO_3/ΔCO, ΔPAN/ΔNO_y, and Δnitrate/ΔNO_y reaching ~0.1, ~0.3, and ~0.3. For five selected cases, the model reasonably simulated O_3 formation but underestimated PAN formation. No significant evolution of OA mass or BrC absorption was observed. However, a consistent increase in oxygen-to-carbon (O/C) ratios of OA indicated that OA oxidation in the agricultural fire plumes was much faster than in urban and forest fire plumes. Finally, total annual SO_2, NO_x, and CO emissions from agricultural fires in Arkansas, Louisiana, Mississippi, and Missouri were estimated (within a factor of ~2) to be equivalent to ~2% SO_2 from coal combustion and ~1% NO_x and ~9% CO from mobile sources.


Journal of Geophysical Research | 2010

Atmospheric chemistry results from the ANTCI 2005 Antarctic plateau airborne study

D. L. Slusher; William D. Neff; Saewung Kim; L. G. Huey; Yuhang Wang; Tao Zeng; David J. Tanner; D. R. Blake; A. J. Beyersdorf; Barry Lefer; J. H. Crawford; F. L. Eisele; R. L. Mauldin; E. Kosciuch; M. Buhr; H. W. Wallace; D. Davis

One of the major goals of the 2005 Antarctic Tropospheric Chemistry Investigation (ANTCI) was to bridge the information gap between current knowledge of South Pole (SP) chemistry and that of the plateau. The former has been extensively studied, but its geographical position on the edge of the plateau makes extrapolating these findings across the plateau problematic. The airborne observations reported here demonstrate that, as at SP, elevated levels of nitric oxide (NO) are a common summertime feature of the plateau. As in earlier studies, planetary boundary layer (PBL) variations were a contributing factor leading to NO fluctuations. Thus, extensive use was made of in situ measurements and models to characterize PBL depths along each flight path and over broader areas of the plateau. Consistent with earlier SP studies that revealed photolysis of nitrate in surface snow as the source of NO x , large vertical gradients in NO were observed over most plateau areas sampled. Similar gradients were also found for the nitrogen species HNO3 and HO2NO2 and for O3. Thus, a common meteorological-chemical feature found was shallow PBLs associated with nitrogen species concentrations that exceeded free tropospheric levels. Collectively, these new results greatly extend the geographical sampling footprint defined by earlier SP studies. In particular, they suggest that previous assessments of the plateau as simply a chemical depository need updating. Although the evidence supporting this position comes in many forms, the fact that net photochemical production of ozone occurs during summer months over extensive areas of the plateau is pivotal.


Bulletin of the American Meteorological Society | 2017

The convective transport of active species in the tropics (Contrast) experiment

Laura L. Pan; E. Atlas; R. J. Salawitch; Shawn B. Honomichl; James F. Bresch; William J. Randel; Eric C. Apel; Rebecca S. Hornbrook; Andrew J. Weinheimer; Daniel C. Anderson; Stephen J. Andrews; Sunil Baidar; Stuart Beaton; Teresa L. Campos; Lucy J. Carpenter; Dexian Chen; B. Dix; Valeria Donets; Samuel R. Hall; T. F. Hanisco; Cameron R. Homeyer; L. G. Huey; Jorgen B. Jensen; Lisa Kaser; Douglas E. Kinnison; Theodore K. Koenig; Jean-Francois Lamarque; Chuntao Liu; Jiali Luo; Zhengzhao Johnny Luo

The Convective Transport of Active Species in the Tropics (CONTRAST) experiment was conducted from Guam (13.5° N, 144.8° E) during January-February 2014. Using the NSF/NCAR Gulfstream V research aircraft, the experiment investigated the photochemical environment over the tropical western Pacific (TWP) warm pool, a region of massive deep convection and the major pathway for air to enter the stratosphere during Northern Hemisphere (NH) winter. The new observations provide a wealth of information for quantifying the influence of convection on the vertical distributions of active species. The airborne in situ measurements up to 15 km altitude fill a significant gap by characterizing the abundance and altitude variation of a wide suite of trace gases. These measurements, together with observations of dynamical and microphysical parameters, provide significant new data for constraining and evaluating global chemistry climate models. Measurements include precursor and product gas species of reactive halogen compounds that impact ozone in the upper troposphere/lower stratosphere. High accuracy, in-situ measurements of ozone obtained during CONTRAST quantify ozone concentration profiles in the UT, where previous observations from balloon-borne ozonesondes were often near or below the limit of detection. CONTRAST was one of the three coordinated experiments to observe the TWP during January-February 2014. Together, CONTRAST, ATTREX and CAST, using complementary capabilities of the three aircraft platforms as well as ground-based instrumentation, provide a comprehensive quantification of the regional distribution and vertical structure of natural and pollutant trace gases in the TWP during NH winter, from the oceanic boundary to the lower stratosphere.

Collaboration


Dive into the L. G. Huey's collaboration.

Top Co-Authors

Avatar

David J. Tanner

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Andrew J. Weinheimer

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Jack E. Dibb

University of New Hampshire

View shared research outputs
Top Co-Authors

Avatar

J. B. Nowak

Langley Research Center

View shared research outputs
Top Co-Authors

Avatar

D. R. Blake

University of California

View shared research outputs
Top Co-Authors

Avatar

J. A. Neuman

Cooperative Institute for Research in Environmental Sciences

View shared research outputs
Top Co-Authors

Avatar

D. J. Knapp

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

F. Flocke

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Liao

Georgia Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge