Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where L. Guzzo is active.

Publication


Featured researches published by L. Guzzo.


Astrophysical Journal Supplement Series | 2007

The Cosmic Evolution Survey (COSMOS): Overview

N. Z. Scoville; H. Aussel; M. Brusa; P. Capak; C. M. Carollo; M. Elvis; Mauro Giavalisco; L. Guzzo; G. Hasinger; C. D. Impey; Jean-Paul Kneib; O. LeFevre; S. J. Lilly; B. Mobasher; A. Renzini; Robert Michael Rich; D. B. Sanders; E. Schinnerer; D. Schminovich; Patrick Lynn Shopbell; Yoshiaki Taniguchi; Neil De Grasse Tyson

The Cosmic Evolution Survey (COSMOS) is designed to probe the correlated evolution of galaxies, star formation, active galactic nuclei (AGNs), and dark matter (DM) with large-scale structure (LSS) over the redshift range z > 0.5-6. The survey includes multiwavelength imaging and spectroscopy from X-ray-to-radio wavelengths covering a 2 deg^2 area, including HST imaging. Given the very high sensitivity and resolution of these data sets, COSMOS also provides unprecedented samples of objects at high redshift with greatly reduced cosmic variance, compared to earlier surveys. Here we provide a brief overview of the survey strategy, the characteristics of the major COSMOS data sets, and a summary the science goals.


Astrophysical Journal Supplement Series | 2007

zCOSMOS: A large VLT/VIMOS redshift survey covering 0 < z < 3 in the COSMOS field

S. Lilly; O. Le Fèvre; A. Renzini; G. Zamorani; M. Scodeggio; T. Contini; C. M. Carollo; G. Hasinger; J.-P. Kneib; A. Iovino; V. Le Brun; C. Maier; V. Mainieri; M. Mignoli; J. D. Silverman; L. Tasca; M. Bolzonella; A. Bongiorno; D. Bottini; P. Capak; Karina Caputi; A. Cimatti; O. Cucciati; Emanuele Daddi; R. Feldmann; P. Franzetti; B. Garilli; L. Guzzo; O. Ilbert; P. Kampczyk

zCOSMOS is a large-redshift survey that is being undertaken in the COSMOS field using 600 hr of observation with the VIMOS spectrograph on the 8 m VLT. The survey is designed to characterize the environments of COSMOS galaxies from the 100 kpc scales of galaxy groups up to the 100 Mpc scale of the cosmic web and to produce diagnostic information on galaxies and active galactic nuclei. The zCOSMOS survey consists of two parts: (1) zCOSMOSbright, a magnitude-limited I-band I_(AB) < 22.5 sample of about 20,000 galaxies with 0.1 < z < 1.2 covering the whole 1.7 deg^2 COSMOS ACS field, for which the survey parameters at z ~ 0.7 are designed to be directly comparable to those of the 2dFGRS at z ~ 0.1; and (2) zCOSMOS-deep, a survey of approximately 10,000 galaxies selected through color-selection criteria to have 1.4 < z < 3.0, within the central 1 deg^2. This paper describes the survey design and the construction of the target catalogs and briefly outlines the observational program and the data pipeline. In the first observing season, spectra of 1303 zCOSMOS-bright targets and 977 zCOSMOS-deep targets have been obtained. These are briefly analyzed to demonstrate the characteristics that may be expected from zCOSMOS, and particularly zCOSMOS-bright, when it is finally completed between 2008 and 2009. The power of combining spectroscopic and photometric redshifts is demonstrated, especially in correctly identifying the emission line in single-line spectra and in determining which of the less reliable spectroscopic redshifts are correct and which are incorrect. These techniques bring the overall success rate in the zCOSMOS-bright so far to almost 90% and to above 97% in the 0.5 < z < 0.8 redshift range. Our zCOSMOS-deep spectra demonstrate the power of our selection techniques to isolate high-redshift galaxies at 1.4 < z < 3.0 and of VIMOS to measure their redshifts using ultraviolet absorption lines.


Astrophysical Journal Supplement Series | 2007

The First Release COSMOS Optical and Near-IR Data and Catalog*

P. Capak; H. Aussel; Masaru Ajiki; H. J. McCracken; B. Mobasher; N. Z. Scoville; Patrick Lynn Shopbell; Y. Taniguchi; D. Thompson; S. Tribiano; S. S. Sasaki; A. W. Blain; M. Brusa; C. L. Carilli; A. Comastri; C. M. Carollo; P. Cassata; James W. Colbert; Richard S. Ellis; M. Elvis; Mauro Giavalisco; W. Green; L. Guzzo; G. Hasinger; O. Ilbert; C. D. Impey; Knud Jahnke; J. Kartaltepe; Jean-Paul Kneib; Jin Koda

We present imaging data and photometry for the COSMOS survey in 15 photometric bands between 0.3 and 2.4 μm. These include data taken on the Subaru 8.3 m telescope, the KPNO and CTIO 4 m telescopes, and the CFHT 3.6 m telescope. Special techniques are used to ensure that the relative photometric calibration is better than 1% across the field of view. The absolute photometric accuracy from standard-star measurements is found to be 6%. The absolute calibration is corrected using galaxy spectra, providing colors accurate to 2% or better. Stellar and galaxy colors and counts agree well with the expected values. Finally, as the first step in the scientific analysis of these data we construct panchromatic number counts which confirm that both the geometry of the universe and the galaxy population are evolving.


Astrophysical Journal Supplement Series | 2009

THE zCOSMOS 10k-BRIGHT SPECTROSCOPIC SAMPLE*

S. J. Lilly; Vincent Le Brun; C. Maier; V. Mainieri; Marco Mignoli; M. Scodeggio; Gianni Zamorani; Marcella Carollo; T. Contini; Jean-Paul Kneib; Olivier Le Fevre; A. Renzini; S. Bardelli; M. Bolzonella; A. Bongiorno; Karina Caputi; G. Coppa; O. Cucciati; Sylvain de la Torre; Loic de Ravel; P. Franzetti; Bianca Garilli; A. Iovino; P. Kampczyk; K. Kovac; C. Knobel; F. Lamareille; Jean-Francois Le Borgne; R. Pello; Yingjie Peng

We present spectroscopic redshifts of a large sample of galaxies with I_(AB) < 22.5 in the COSMOS field, measured from spectra of 10,644 objects that have been obtained in the first two years of observations in the zCOSMOS-bright redshift survey. These include a statistically complete subset of 10,109 objects. The average accuracy of individual redshifts is 110 km s^(–1), independent of redshift. The reliability of individual redshifts is described by a Confidence Class that has been empirically calibrated through repeat spectroscopic observations of over 600 galaxies. There is very good agreement between spectroscopic and photometric redshifts for the most secure Confidence Classes. For the less secure Confidence Classes, there is a good correspondence between the fraction of objects with a consistent photometric redshift and the spectroscopic repeatability, suggesting that the photometric redshifts can be used to indicate which of the less secure spectroscopic redshifts are likely right and which are probably wrong, and to give an indication of the nature of objects for which we failed to determine a redshift. Using this approach, we can construct a spectroscopic sample that is 99% reliable and which is 88% complete in the sample as a whole, and 95% complete in the redshift range 0.5 < z < 0.8. The luminosity and mass completeness levels of the zCOSMOS-bright sample of galaxies is also discussed.


Astrophysical Journal Supplement Series | 2009

The Chandra COSMOS Survey, I: Overview and Point Source Catalog

M. Elvis; F. Civano; C. Vignali; S. Puccetti; F. Fiore; N. Cappelluti; T. Aldcroft; Antonella Fruscione; G. Zamorani; A. Comastri; M. Brusa; R. Gilli; Takamitsu Miyaji; F. Damiani; A. M. Koekemoer; Alexis Finoguenov; H. Brunner; Claudia M. Urry; J. D. Silverman; V. Mainieri; Guenther Hasinger; Richard E. Griffiths; Marcella Carollo; Heng Hao; L. Guzzo; A. W. Blain; Daniela Calzetti; C. L. Carilli; P. Capak; Stefano Ettori

The Chandra COSMOS Survey (C-COSMOS) is a large, 1.8 Ms, Chandra program that has imaged the central 0.5 deg^2 of the COSMOS field (centered at 10 ^h , +02 ^o ) with an effective exposure of ~160 ks, and an outer 0.4 deg^2 area with an effective exposure of ~80 ks. The limiting source detection depths are 1.9 × 10^(–16) erg cm^(–2) s^(–1) in the soft (0.5-2 keV) band, 7.3 × 10^(–16) erg cm^(–2) s^(–1) in the hard (2-10 keV) band, and 5.7 × 10^(–16) erg cm^(–2) s^(–1) in the full (0.5-10 keV) band. Here we describe the strategy, design, and execution of the C-COSMOS survey, and present the catalog of 1761 point sources detected at a probability of being spurious of <2 × 10^(–5) (1655 in the full, 1340 in the soft, and 1017 in the hard bands). By using a grid of 36 heavily (~50%) overlapping pointing positions with the ACIS-I imager, a remarkably uniform (±12%) exposure across the inner 0.5 deg^2 field was obtained, leading to a sharply defined lower flux limit. The widely different point-spread functions obtained in each exposure at each point in the field required a novel source detection method, because of the overlapping tiling strategy, which is described in a companion paper. This method produced reliable sources down to a 7-12 counts, as verified by the resulting logN-logS curve, with subarcsecond positions, enabling optical and infrared identifications of virtually all sources, as reported in a second companion paper. The full catalog is described here in detail and is available online.


The Astrophysical Journal | 2009

Stellar and Total Baryon Mass Fractions in Groups and Clusters Since Redshift 1

S. Giodini; D. Pierini; Alexis Finoguenov; G. W. Pratt; Hans Boehringer; Alexie Leauthaud; L. Guzzo; H. Aussel; M. Bolzonella; P. Capak; M. Elvis; G. Hasinger; O. Ilbert; J. Kartaltepe; A. M. Koekemoer; S. J. Lilly; Richard Massey; H. J. McCracken; J. Rhodes; M. Salvato; D. B. Sanders; N. Z. Scoville; Shunji S. Sasaki; Vernesa Smolčić; Y. Taniguchi; D. Thompson

We investigate if the discrepancy between estimates of the total baryon mass fraction obtained from observations of the cosmic microwave background (CMB) and of galaxy groups/clusters persists when a large sample of groups is considered. To this purpose, 91 candidate X-ray groups/poor clusters at redshift 0.1 ≤ z ≤ 1 are selected from the COSMOS 2 deg^2 survey, based only on their X-ray luminosity and extent. This sample is complemented by 27 nearby clusters with a robust, analogous determination of the total and stellar mass inside R_(500). The total sample of 118 groups and clusters with z ≤ 1 spans a range in M_(500) of ~10^(13)-10^(15) M_☉. We find that the stellar mass fraction associated with galaxies at R_(500) decreases with increasing total mass as M^(–0.37 ± 0.04)_(500), independent of redshift. Estimating the total gas mass fraction from a recently derived, high-quality scaling relation, the total baryon mass fraction (f^(stars+gas)_(500) = f^(stars)_(500) + f^(gas)_(500)) is found to increase by ~25%, when M_(500) increases from = 5 × 10^(13) M_☉ to = 7 × 10^(14) M_☉. After consideration of a plausible contribution due to intracluster light (11%-22% of the total stellar mass) and gas depletion through the hierarchical assembly process (10% of the gas mass), the estimated values of the total baryon mass fraction are still lower than the latest CMB measure of the same quantity (WMAP5), at a significance level of 3.3σ for groups of = 5 × 10^(13) M_☉. The discrepancy decreases toward higher total masses, such that it is 1σ at = 7 × 10^(14) M_☉. We discuss this result in terms of nongravitational processes such as feedback and filamentary heating.


Astronomy and Astrophysics | 2005

The VIMOS-VLT Deep Survey: Evolution of the galaxy luminosity function up to z=2 in first epoch data

O. Ilbert; L. Tresse; E. Zucca; S. Bardelli; S. Arnouts; G. Zamorani; L. Pozzetti; D. Bottini; B. Garilli; V. Le Brun; O. Le Fèvre; D. Maccagni; J. P. Picat; R. Scaramella; M. Scodeggio; G. Vettolani; Alessandra Zanichelli; C. Adami; M. Arnaboldi; M. Bolzonella; A. Cappi; S. Charlot; T. Contini; Sylvie Foucaud; P. Franzetti; I. Gavignaud; L. Guzzo; A. Iovino; H. J. McCracken; B. Marano

We investigate the evolution of the galaxy luminosity function from the VIMOS-VLT Deep Survey (VVDS) from the present to z=2 in five (U, B, V, R and I) rest-frame band-passes. We use the first epoch VVDS deep sample of 11,034 spectra selected at 17.5 <= I_{AB} <= 24.0, on which we apply the Algorithm for Luminosity Function (ALF), described in this paper. We observe a substantial evolution with redshift of the global luminosity functions in all bands. From z=0.05 to z=2, we measure a brightening of the characteristic magnitude M* included in the magnitude range 1.8-2.5, 1.7-2.4, 1.2-1.9, 1.1-1.8 and 1.0-1.6 in the U, B, V, R and I rest-frame bands, respectively. We confirm this differential evolution of the luminosity function with rest-frame wavelength, from the measurement of the comoving density of bright galaxies (M < M*(z=0.1)). This density increases by a factor of around 2.6, 2.2, 1.8, 1.5, 1.5 between z=0.05 and z=1 in the U, B, V, R, I bands, respectively. We also measure a possible steepening of the faint-end slope of the luminosity functions, with \\Delta\\alpha ~ -0.3 between z=0.05 and z=1, similar in all bands.


Astronomy and Astrophysics | 2009

The XMM-Newton wide-field survey in the COSMOS field - The point-like X-ray source catalogue

N. Cappelluti; M. Brusa; G. Hasinger; A. Comastri; G. Zamorani; A. Finoguenov; R. Gilli; S. Puccetti; Takamitsu Miyaji; M. Salvato; C. Vignali; T. Aldcroft; H. Böhringer; H. Brunner; F. Civano; M. Elvis; F. Fiore; Antonella Fruscione; Richard E. Griffiths; L. Guzzo; A. Iovino; Anton M. Koekemoer; V. Mainieri; N. Z. Scoville; Patrick Lynn Shopbell; J. D. Silverman; Claudia M. Urry

Context. The COSMOS survey is a multiwavelength survey aimed to study the evolution of galaxies, AGN and large scale structures. Within this survey XMM-COSMOS a powerful tool to detect AGN and galaxy clusters. The XMM-COSMOS is a deep X-ray survey over the full 2 deg^2 of the COSMOS area. It consists of 55 XMM-Newton pointings for a total exposure of ~1.5 Ms with an average vignetting-corrected depth of 40 ks across the field of view and a sky coverage of 2.13 deg^2. Aims. We present the catalogue of point-like X-ray sources detected with the EPIC CCD cameras, the log N − log S relations and the X-ray colour–colour diagrams. Methods. The analysis was performed using the XMM-SAS data analysis package in the 0.5–2 keV, 2–10 keV and 5–10 keV energy bands. Source detection has been performed using a maximum likelihood technique especially designed for raster scan surveys. The completeness of the catalogue as well as log N − log S and source density maps have been calibrated using Monte Carlo simulations. Results. The catalogs contains a total of 1887 unique sources detected in at least one band with likelihood parameter det_ml > 10. The survey, which shows unprecedented homogeneity, has a flux limit of ~1.7×10^(−15) erg cm^(−2) s^(−1), ~9.3×10^(−15) erg cm^(−2) s^(−1) and ~1.3×10^(−14) erg cm^(−2) s^(−1) over 90% of the area (1.92 deg^2) in the 0.5–2 keV, 2–10 keV and 5–10 keV energy band, respectively. Thanks to the rather homogeneous exposure over a large area, the derived log N − log S relations are very well determined over the flux range sampled by XMM-COSMOS. These relations have been compared with XRB synthesis models, which reproduce the observations with an agreement of ~10% in the 5–10 keV and 2–10 keV band, while in the 0.5–2 keV band the agreement is of the order of ~20%. The hard X-ray colors confirmed that the majority of the extragalactic sources in a bright subsample are actually type I or type II AGN. About 20% of the sources have a X-ray luminosity typical of AGN (L_X > 10^(42) erg/s) although they do not show any clear signature of nuclear activity in the optical spectrum.


The Astrophysical Journal | 1997

Redshift-Space Distortions and the Real-Space Clustering of Different Galaxy Types

L. Guzzo; Michael A. Strauss; Karl B. Fisher; Riccardo Giovanelli; Martha P. Haynes

We study the distortions induced by peculiar velocities on the redshift-space correlation function of galaxies of different morphological types in the Pisces-Perseus redshift survey. Redshift-space distortions affect early- and late-type galaxies in different ways. In particular, at small separations the dominant effect comes from virialized cluster cores, where ellipticals are the dominant population. The net result is that a meaningful comparison of the clustering strength of different morphological types can be performed only in real space, i.e., after projecting out the redshift distortions on the two-point correlation function ξ(rp, π). A power-law fit to the projected function wp(rp) on scales smaller than 10 h-1 Mpc gives r -->0=8.35 -->+ 0.75−0.76 h-1 Mpc, γ=2.05 -->+ 0.10−0.08 for the early-type population, and r -->0=5.55 -->+ 0.40−0.45 h-1 Mpc, γ=1.73 -->+ 0.07−0.08 for spirals and irregulars. These values are derived for a sample luminosity limited to MZw ≤ -19.5. We detect a 25% increase of r0 with luminosity for all types combined, from MZw = -19 to -20. In the framework of a simple stable clustering model for the mean streaming of pairs, we estimate σ12(1), the one-dimensional pairwise velocity dispersion between 0 and 1 h-1 Mpc, to be 865 -->+ 250−165 km s-1 for early-type galaxies and 345 -->+ 95−65 km s-1 for late types. This latter value should be a fair estimate of the pairwise dispersion for field galaxies; it is stable with respect to the presence or absence of clusters in the sample, and is consistent with the values found for noncluster galaxies and IRAS galaxies at similar separations.


Astronomy and Astrophysics | 2001

The ROSAT-ESO flux limited X-ray (REFLEX) galaxy cluster survey. I. The construction of the cluster sample ?

H. Böhringer; L. Guzzo; Chris A. Collins; Sabine Schindler; Ray G. Cruddace; S. De Grandi; Guido Chincarini; H. T. MacGillivray; P. A. Shaver

We discuss the construction of an X-ray flux-limited sample of galaxy clusters, the REFLEX survey catalogue, to be used for cosmological studies. This cluster identication and redshift survey was conducted in the frame of an ESO key programme and is based on candidates selected from the southern part of the ROSAT All-Sky Survey (RASS). For the rst cluster candidate selection from a flux-limited RASS source list, we make use of optical data from the COSMOS digital catalogue produced from the scans of the UK-Schmidt plates. To ensure homogeneity of the sample construction process, this selection is based only on this one well-dened optical data base. The nature of the candidates selected in this process is subsequently checked by a more detailed evaluation of the X-ray and optical source properties and available literature data. The nal identication and the redshift is then based on optical spectroscopic follow-up observations. In this paper we document the process by which the primary cluster candidate catalogue is constructed prior to the optical follow-up observations. We describe the reanalysis of the RASS source catalogue which enables us to impose a proper flux limit cut to the X-ray source list without introducing a severe bias against extended sources. We discuss the correlation of the X-ray and optical (COSMOS) data to nd galaxy density enhancements at the RASS X-ray source positions and the further evaluation of the nature of these cluster candidates. Based also on the results of the follow-up observations we provide a statistical analysis of the completeness and contamination of the nal cluster sample and show results on the cluster number counts. The nal sample of identied X-ray clusters reaches a flux limit of 3 10 12 erg s 1 cm 2 in the 0.1{2.4 keV band and comprises 452 clusters in an area of 4.24 ster. The results imply a completeness of the REFLEX cluster sample well in excess of 90%. We also derive for the rst time an upper limit of less than 9% for the number of clusters which may feature a dominant contribution to the X-ray emission from AGN. This accuracy is sucient for the use of this cluster sample for cosmological tests.

Collaboration


Dive into the L. Guzzo's collaboration.

Top Co-Authors

Avatar

Chris A. Collins

Liverpool John Moores University

View shared research outputs
Top Co-Authors

Avatar

O. Le Fèvre

Aix-Marseille University

View shared research outputs
Researchain Logo
Decentralizing Knowledge