L. Hanekom
University of Queensland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by L. Hanekom.
Circulation | 2005
L. Hanekom; Carly Jenkins; Leanne Jeffries; Colin Case; Julie Mundy; Carmel M. Hawley; Thomas H. Marwick
Background— Assessment of myocardial viability based on wall-motion scoring (WMS) during dobutamine echocardiography (DbE) is difficult and subjective. Strain-rate imaging (SRI) is quantitative, but its incremental value over WMS for prediction of functional recovery after revascularization is unclear. Methods and Results— DbE and SRI were performed in 55 stable patients (mean age, 64±10 years; mean ejection fraction, 36±8%) with previous myocardial infarction. Viability was predicted by WMS if function augmented during low-dose DbE. SR, end-systolic strain (ESS), postsystolic strain (PSS), and timing parameters were analyzed at rest and with low-dose DbE in abnormal segments. Regional and global functional recovery was defined by side-by-side comparison of echocardiographic images before and 9 months after revascularization. Of 369 segments with abnormal resting function, 146 showed regional recovery. Compared with segments showing functional recovery, those that failed to recover had lower low-dose DbE SR, SR increment (ΔSR), ESS, and ESS increment (ΔESS) (each P<0.005). After optimal cutoffs for the strain parameters were defined, the sensitivity of low-dose DbE SR (78%, P=0.3), ΔSR (80%, P=0.1), ESS (75%, P=0.6), and ΔESS (74%, P=0.8) was better though not significantly different from WMS (73%). The specificity of WMS (77%) was similar to the SRI parameters. Combination of WMS and SRI parameters augmented the sensitivity for prediction of functional recovery above WMS alone (82% versus 73%, P=0.015; area under the curve=0.88 versus 0.73, P<0.001), although specificities were comparable (80% versus 77%, P=0.2). Conclusions— The measurement of low-dose DbE SR and ΔSR is feasible, and their combination with WMS assessment improves the sensitivity of viability assessment with DbE.
Heart | 2006
Stuart Moir; L. Hanekom; Zhi You Fang; Brian Haluska; Chiew Wong; Malcolm I. Burgess; Thomas H. Marwick
Objective: To use quantitative myocardial contrast echocardiography (MCE) and strain rate imaging (SRI) to assess the role of microvascular disease in subclinical diabetic cardiomyopathy. Methods: Stress MCE and SRI were performed in 48 patients (22 with type II diabetes mellitus (DM) and 26 controls), all with normal left ventricular systolic function and no obstructive coronary disease by quantitative coronary angiography. Real-time MCE was acquired in three apical views at rest and after combined dipyridamole–exercise stress. Myocardial blood flow (MBF) was quantified in the 10 mid- and apical cardiac segments at rest and after stress. Resting peak systolic strain rate (SR) and peak systolic strain (ε) were calculated in the same 10 myocardial segments. Results: The DM and control groups were matched for age, sex and other risk factors, including hypertension. The DM group had higher body mass index and left ventricular mass index. Quantitative SRI analysis was possible in all patients and quantitative MCE in 46 (96%). The mean ε, SR and MBF reserve were all significantly lower in the DM group than in controls, with diabetes the only independent predictor of each parameter. No correlation was seen between MBF and SR (r = −0.01, p = 0.54) or between MBF and ε (r = −0.20, p = 0.20). Conclusions: Quantitative MCE shows that patients with diabetes but no evidence of obstructive coronary artery disease have impaired MBF reserve, but abnormal transmural flow and subclinical longitudinal myocardial dysfunction are not related.
Journal of the American College of Cardiology | 2004
L. Hanekom; Carly Jenkins; Leanne Short; Thomas H. Marwick
Background. Myocardial viability (VM) assessment based on wall motion scoring (WMS) with dobutamine echo (DbE) is difficult and subjective. New quantitative techniques such as strain rate imaging (SRI) correspond with isotopic techniques but their ability to predict functional recovery (FR) after revascularization is unclear. Methods. Stable post-MI pts (n=43, age 63±9, EF 36±6%) underwent SRI during DbE. WMS evidence of VM was based on lowdose augmentation at DbE. SR, end-systolic strain (ESS), post-systolic strain (PSS) and timing were analyzed at rest and low dose in abnormal segts. Pts were followed for 9±12 months; FR was defined as segt improvement on post-revascularization images. Results: Of 180 segts with abnormal resting function, 83 showed FR and 97 did not. Resting parameters were not predictive of recovery; resting post-systolic shortening had a sensitivity and specificity 0.6), SR increment (0.5±0.5 vs 0.1±0.6/s, p 0.23), ESS (11.6±9.2 vs 4.7±9.3, p 8.5), ESS increment (4.9±9.9 vs 0.7±6.2, p 3.4) and time to ES (0.31±0.9 vs 0.38±0.09, p<0.001, cutoff <0.32). Sensitivity and specificity of quantitative parameters were comparable to WM analysis (Table). Conclusions. SR and strain responses to DbE are a feasible marker of viability, comparable to WM assessment.
European Heart Journal | 2004
L. Hanekom; Leanne Jeffriess; Brian Haluska; Julie Mundy; Thomas H. Marwick
Background. Although the evidence for applying specialist nurse-led programs of care to optimise the postdischarge management of chronic heart failure (CHF) is compelling, the majority of randomised studies have either applied a clinic or home-based approach. In practice, however, many programs employ a pragmatic combination of the two.
Heart Lung and Circulation | 2005
Jonathan Chan; Leanne Du; Rodel Leano; L. Hanekom; C. A. Nelson; Thomas H. Marwick
We sought to determine the relative impact of myocardial scar and viability on post-infarct left ventricular (LV) remodeling in medically-treated patients with LV dysfunction. Forty patients with chronic ischemic heart disease (age 64±9, EF 40±11%) underwent rest-redistribution Tl201 SPECT (scar = 50% transmural extent), A global index of scarring for each patient (CMR scar score) was calculated as the sum of transmural extent scores in all segts. LV end diastolic volumes (LVEDV) and LV end systolic volumes (LVESV) were measured by real-time threedimensional echo at baseline and median of 12 months follow-up. There was a significant positive correlation between change in LVEDV with number of scar segts by all three imaging techniques (LVEDV: SPECT scar, r = 0.62, p 15%) was predicted bySPECTscars(AUC= 0.79),DbEscars(AUC= 0.76),CMR scars (AUC= 0.70), and CMR scar score (AUC 0.72). There were no significant differences between any of the ROC curves (Z score <0.74). Number of SPECT scars (p = 0.002), DbE scars (p = 0.01), CMR scars (p = 0.004), and CMR scar score (p = 0.03) were independent predictors of LVEDV. The extent of scar tissue can predict global LV remodeling irrespective of cardiac imaging technique but myocardial viability may not be protective against LV remodeling in medically-treated patients.Transmural extent of infarction (TME) may be an important determinant of functional recovery and remodeling. Recent animal data suggest that strain rate imaging (SRI) maybe able to identify subendocardial ischemia.We compared SRI and cyclic variation of integrated backscatter (CVIB) for predicting TME in the quantitative assessment of regional subepicardial function. Forty-nine (n = 49) postmyocardial infarct patients (61±10 years, EF 41±10%) underwent tissue Doppler echocardiography (TDE) and contrast enhanced magnetic resonance imaging (CMR). A15 mm×2mm sampling volume (tracked to wall motion) was placed over the long axis subepicardial region of each segment during TDE offline analysis to measure peak longitudinal systolic strain rate (SR), peak longitudinal systolic strain (PS), and CVIB. Findingswere compared with TME classified into two categories of scar thickness by CMR: Non-transmural (TME≤50%), and transmural (TME > 50%). Of 213 segments identified with resting wall motion abnormalities, 145 segments showed delayed hyperenhancement on CMR. SR, PS and CVIB were similar with no significant differences between transmural and non-transmural infarcts regardless of the echo modality.Revascularization (RVS) of scar segts does not lead to recovery of left ventricular (LV) function, but its effect on post-infarct remodeling is unclear. We examined the impact of RVS on regional remodeling in different transmural extents of scar (TME). Dobutamine echo (DbE) and contrast enhanced magnetic resonance imaging (ce- MRI) were performed in 72 pts post MI (age 63±10, EF 49±12%). Pts were selected for RVS (n = 31) or medical treatment (n = 41). Segts were classified as scar if there were no contractile reserve during lowdose DbE.TMEwas measured by ce-MRI; a cutoff of 75% was used to differentiate transmural (TM) from non-transmural (NT) scars. Regional end systolic (ESV) and end diastolic volumes (EDV) were measured at baseline and 12 months follow up.Of 218 segts identified as scar on DbE, 164wereNTand 54 were TM on ce-MRI. Revascularization was performed to 62 NT and 11 TM segts. In the RVS group, there was reverse remodeling with significant reduction in LV volumes in NT (ESV, 6.8±3.2 ml versus 5.8±3.7 ml, p = 0.002; EDV, 10.9±4.9 ml versus 9.8±5.6 ml, p = 0.02), but no significant change in volumes in TM (ESV, 6.9±3.7 ml versus 5.4±2.1 ml, p = 0.09; EDV, 10.2±4.4 ml versus 9.4±4.3 ml, p = 0.5). In the medically treated group, there were no changes in LV volumes in both NT (ESV, 12.0±11.9 ml versus 12.7±13.8 ml, p = 0.3; EDV, 12.5±7.8 ml versus 12.6±9.7 ml, p = 0.8) and TM (ESV, 8.0±3.8 ml versus 7.9±4.6 ml, p = 0.8; EDV, 10.3±4.8 ml versus 10.4±5.4 ml, p = 0.9). Despite absence of contractile reserve on DbE, NT benefit from coronary revascularization with regional reverse LV remodeling.Left ventricular (LV) volumes have important prognostic implications in patients with chronic ischemic heart disease. We sought to examine the accuracy and reproducibility of real-time 3D echo (RT-3DE) compared to TI-201 single photon emission computed tomography (SPECT) and cardiac magnetic resonance imaging (MRI). Thirty (n = 30) patients (age 62±9 years, 23 men) with chronic ischemic heart disease underwent LV volume assessment with RT-3DE, SPECT, and MRI. Ano vel semi-automated border detection algorithmwas used by RT-3DE. End diastolic volumes (EDV) and end systolic volumes (ESV) measured by RT3DE and SPECT were compared to MRI as the standard of reference. RT-3DE and SPECT volumes showed excellent correlation with MRI (Table). Both RT- 3DE and SPECT underestimated LV volumes compared to MRI (ESV, SPECT 74±58 ml versus RT-3DE 95±48 ml versus MRI 96±54 ml); (EDV, SPECT 121±61 ml versus RT-3DE 169±61 ml versus MRI 179±56 ml). The degree of ESV underestimation with RT-3DE was not significant.
Heart Lung and Circulation | 2005
Goo-Yeong Cho; L. Hanekom; Rodel Leano; Leanne Jeffriess; Jonathan Chan; Thomas H. Marwick
We sought to determine the relative impact of myocardial scar and viability on post-infarct left ventricular (LV) remodeling in medically-treated patients with LV dysfunction. Forty patients with chronic ischemic heart disease (age 64±9, EF 40±11%) underwent rest-redistribution Tl201 SPECT (scar = 50% transmural extent), A global index of scarring for each patient (CMR scar score) was calculated as the sum of transmural extent scores in all segts. LV end diastolic volumes (LVEDV) and LV end systolic volumes (LVESV) were measured by real-time threedimensional echo at baseline and median of 12 months follow-up. There was a significant positive correlation between change in LVEDV with number of scar segts by all three imaging techniques (LVEDV: SPECT scar, r = 0.62, p 15%) was predicted bySPECTscars(AUC= 0.79),DbEscars(AUC= 0.76),CMR scars (AUC= 0.70), and CMR scar score (AUC 0.72). There were no significant differences between any of the ROC curves (Z score <0.74). Number of SPECT scars (p = 0.002), DbE scars (p = 0.01), CMR scars (p = 0.004), and CMR scar score (p = 0.03) were independent predictors of LVEDV. The extent of scar tissue can predict global LV remodeling irrespective of cardiac imaging technique but myocardial viability may not be protective against LV remodeling in medically-treated patients.Transmural extent of infarction (TME) may be an important determinant of functional recovery and remodeling. Recent animal data suggest that strain rate imaging (SRI) maybe able to identify subendocardial ischemia.We compared SRI and cyclic variation of integrated backscatter (CVIB) for predicting TME in the quantitative assessment of regional subepicardial function. Forty-nine (n = 49) postmyocardial infarct patients (61±10 years, EF 41±10%) underwent tissue Doppler echocardiography (TDE) and contrast enhanced magnetic resonance imaging (CMR). A15 mm×2mm sampling volume (tracked to wall motion) was placed over the long axis subepicardial region of each segment during TDE offline analysis to measure peak longitudinal systolic strain rate (SR), peak longitudinal systolic strain (PS), and CVIB. Findingswere compared with TME classified into two categories of scar thickness by CMR: Non-transmural (TME≤50%), and transmural (TME > 50%). Of 213 segments identified with resting wall motion abnormalities, 145 segments showed delayed hyperenhancement on CMR. SR, PS and CVIB were similar with no significant differences between transmural and non-transmural infarcts regardless of the echo modality.Revascularization (RVS) of scar segts does not lead to recovery of left ventricular (LV) function, but its effect on post-infarct remodeling is unclear. We examined the impact of RVS on regional remodeling in different transmural extents of scar (TME). Dobutamine echo (DbE) and contrast enhanced magnetic resonance imaging (ce- MRI) were performed in 72 pts post MI (age 63±10, EF 49±12%). Pts were selected for RVS (n = 31) or medical treatment (n = 41). Segts were classified as scar if there were no contractile reserve during lowdose DbE.TMEwas measured by ce-MRI; a cutoff of 75% was used to differentiate transmural (TM) from non-transmural (NT) scars. Regional end systolic (ESV) and end diastolic volumes (EDV) were measured at baseline and 12 months follow up.Of 218 segts identified as scar on DbE, 164wereNTand 54 were TM on ce-MRI. Revascularization was performed to 62 NT and 11 TM segts. In the RVS group, there was reverse remodeling with significant reduction in LV volumes in NT (ESV, 6.8±3.2 ml versus 5.8±3.7 ml, p = 0.002; EDV, 10.9±4.9 ml versus 9.8±5.6 ml, p = 0.02), but no significant change in volumes in TM (ESV, 6.9±3.7 ml versus 5.4±2.1 ml, p = 0.09; EDV, 10.2±4.4 ml versus 9.4±4.3 ml, p = 0.5). In the medically treated group, there were no changes in LV volumes in both NT (ESV, 12.0±11.9 ml versus 12.7±13.8 ml, p = 0.3; EDV, 12.5±7.8 ml versus 12.6±9.7 ml, p = 0.8) and TM (ESV, 8.0±3.8 ml versus 7.9±4.6 ml, p = 0.8; EDV, 10.3±4.8 ml versus 10.4±5.4 ml, p = 0.9). Despite absence of contractile reserve on DbE, NT benefit from coronary revascularization with regional reverse LV remodeling.Left ventricular (LV) volumes have important prognostic implications in patients with chronic ischemic heart disease. We sought to examine the accuracy and reproducibility of real-time 3D echo (RT-3DE) compared to TI-201 single photon emission computed tomography (SPECT) and cardiac magnetic resonance imaging (MRI). Thirty (n = 30) patients (age 62±9 years, 23 men) with chronic ischemic heart disease underwent LV volume assessment with RT-3DE, SPECT, and MRI. Ano vel semi-automated border detection algorithmwas used by RT-3DE. End diastolic volumes (EDV) and end systolic volumes (ESV) measured by RT3DE and SPECT were compared to MRI as the standard of reference. RT-3DE and SPECT volumes showed excellent correlation with MRI (Table). Both RT- 3DE and SPECT underestimated LV volumes compared to MRI (ESV, SPECT 74±58 ml versus RT-3DE 95±48 ml versus MRI 96±54 ml); (EDV, SPECT 121±61 ml versus RT-3DE 169±61 ml versus MRI 179±56 ml). The degree of ESV underestimation with RT-3DE was not significant.
Heart Lung and Circulation | 2004
L. Hanekom; Leanne Jeffriess; Gunnar Hansen; Thomas H. Marwick
Background. Although the evidence for applying specialist nurse-led programs of care to optimise the postdischarge management of chronic heart failure (CHF) is compelling, the majority of randomised studies have either applied a clinic or home-based approach. In practice, however, many programs employ a pragmatic combination of the two.
Heart Lung and Circulation | 2004
Carly Jenkins; Kristen Bricknell; L. Hanekom; Rodel Leano; Zhi You Fang; Thomas H. Marwick
Background. Although the evidence for applying specialist nurse-led programs of care to optimise the postdischarge management of chronic heart failure (CHF) is compelling, the majority of randomised studies have either applied a clinic or home-based approach. In practice, however, many programs employ a pragmatic combination of the two.
Heart Lung and Circulation | 2004
R. Lee; S. Wahi; L. Hanekom; Rodel Leano; Thomas H. Marwick
Background. Although the evidence for applying specialist nurse-led programs of care to optimise the postdischarge management of chronic heart failure (CHF) is compelling, the majority of randomised studies have either applied a clinic or home-based approach. In practice, however, many programs employ a pragmatic combination of the two.
Journal of the American College of Cardiology | 2004
Carly Jenkins; Kristen Bricknell; L. Hanekom; Thomas H. Marwick