Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where L. Hársing is active.

Publication


Featured researches published by L. Hársing.


Current Medicinal Chemistry | 2006

Glycine Transporter Type-1 and its Inhibitors

L. Hársing; Zsolt Juranyi; Istvan Gacsalyi; Pál Tapolcsányi; Andrea Czompa; Péter Mátyus

The ionotropic glutamate receptor NMDA is allosterically modulated by glycine, a coagonist, its presence is an absolute requirement for receptor activation. The transport of glycine in glutamatergic synapse is carried out by glycine transporter-1 (GlyT1), a Na+/Cl(-)-dependent carrier molecule. The primary role of GlyT1 is to maintain glycine concentrations below saturation level at postsynaptic NMDA receptors. Several isoforms of GlyT1 (a-e) have been identified, which are expressed both in glial and neuronal cell membranes. GlyT1 operates bidirectionally: it decreases synaptic glycine concentration when operates in normal mode and releases glycine from glial cells as operates in a reverse mode. It is expected that non-transportable, non-competitive inhibitors of GlyT1 may have therapeutic value in CNS disorders characterized by hypofunctional NMDA receptor-mediated glutamatergic neurotransmission. Accordingly, GlyT1 inhibitors exhibited antipsychotic profile in a number of animal tests. The first promising in vitro and in vivo experiments with glycine itself, and its N-methyl analogue, sarcosine, had initiated the syntheses of potential GlyT1 inhibitors with more complex structures, in which, however, the glycine or sarcosine moiety had always been incorporated. Those attempts led to the development of two compounds, ALX-5407 and Org-24461 with high inhibitory potency; however, none of which is now considered as a drug candidate due, most probably, to safety and/or pharmacokinetic issues. More recently, several structurally new series of highly potent inhibitors with no aminomethylcarboxy group have also been discovered. Some of them might be expected to fulfill all requirements for clinical development. The new generation of GlyT1 inhibitors may represent a novel treatment of patients suffering from schizophrenia and/or other neuropathological conditions.


Neurochemical Research | 2004

A 5-HT7 heteroreceptor-mediated inhibition of [3H]serotonin release in raphe nuclei slices of the rat: evidence for a serotonergic-glutamatergic interaction.

L. Hársing; Ibolya Prauda; Jozsef Barkoczy; Péter Mátyus; Zsolt Juranyi

Midbrain slices containing the dorsal and medial raphe nuclei were prepared from rat brain, loaded with [3H]serotonin ([3H]5-HT), superfused, and the electrically induced efflux of radioactivity was determined. The nonselective 5-HT receptor agonist 5-carboxamido-tryptamine (5-CT; 0.001 to 1 μM) inhibited the electrically stimulated [3H]5-HT overflow from raphe nuclei slices (IC50 of 3.34 ± 0.37 nM). This effect of 5-CT on [3H]5-HT overflow was antagonized by the 5-HT7 receptor antagonist SB-258719 (10 μM) and the 5-HT1B/1D antagonist SB-216641 (1 μM), the IC50 values for 5-CT in the presence of SB-258719 and SB-216641 were 94.23 ± 4.84 and 47.81 ± 4.66 nM. The apparent pA2 values for SB-258719 and SB-216641 against 5-CT were 6.43 and 7.12, respectively. The inhibitory effect of 5-CT on [3H]5-HT overflow was weakly antagonized by 10 μM of WAY-100635, a 5-HT1A receptor antagonist (IC50 6.65 ± 0.56 nM, apparent pA2 4.99). The antagonist effect of SB-258719 (10 μM) on 5-CT–evoked [3H]5-HT overflow inhibition was also determined in the presence of 1 μM SB-216641 or 1 μM SB-216641 and 10 μM WAY-100635, and additive interactions were found between the antagonists of 5-HT7 and 5-HT1 receptor subtypes. Addition of the Na+ channel blocker tetrodotoxin (1 μM) in the presence of SB-216641 (1 μM) and WAY-100635 (10 μM) attenuated the inhibitory effect of 5-CT on KCl-induced [3H]5-HT overflow. These findings indicate that 5-CT inhibits [3H]5-HT overflow from raphe nuclei slices of the rat by stimulation of 5-HT7 and 5-HT1B/1D receptors, whereas the role of 5-HT1A receptors in this inhibition is less pronounced. They also suggest that 5-HT7 receptors are probably not located on serotonergic neurons and thus may serve as heteroreceptors in regulation of 5-HT release in the raphe nuclei. 5-CT (0.1 μM) also inhibited [3H]glutamate release, and SB-258719 (10 μM) suspended this effect. We therefore speculated that the axon terminals of the glutamatergic cortico-raphe neurons may possess 5-HT7 receptors that inhibit glutamate release, which consequently leads to decreased activity of serotonergic neurons. The postulated glutamatergic–serotonergic interaction in the raphe nuclei was further evidenced by the finding that N-methyl-d-aspartate and AMPA enhanced [3H]5-HT release.


Neurochemical Research | 1987

Neurochemical evidence for two types of presynaptic alpha2-adrenoceptors

J. Kapocsi; George T. Somogyi; N. Ludvig; Serfozo P; L. Hársing; Woods Rj; E.S. Vizi

Neurochemical and pharmacological evidence has been obtained that noradrenergic varicosities (in mouse and rat vas deferens) and cholinergic varicosities (in the Auerbachs plexus) contain heterogenous alpha2-adrenoceptors through which the release of [3H]noradrenaline and [3H]acetylcholine can be modulated. The quantitative data also support the hypothesis that different noradrenaline and xylazine sensitive alpha2-adrenoceptors are present prejunctionally in the vas deferens and Auerbachs plexus preparations. Prazosin, although it has a presynaptic inhibitory effect on alpha2-adrenoceptors of noradrenergic axon terminals, has no effect on cholinergic axon terminals. These data suggest that there are two different types of alpha2-adrenoceptors at the presynaptic axon terminals.


Neurochemical Research | 1992

N-type calcium channels are involved in the dopamine releasing effect of nicotine

L. Hársing; Henry Sershen; Sylvester E. Vizi; Abel Lajtha

Mouse striatum was incubated with [3H]dopamine ([3H]DA) and superfused with and the tritium efflux induced by nicotine, electrical stimulation, or simultaneous nicotine and electrical stimulation was measured, to characterize the role of different Ca2+ channels in the transmitter release. Nicotine stimulation and electrical stimulation exerted additive effects on tritium efflux. Separation of the released radioactivity on alumina columns indicated that nicotine or electrical stimulation increases the release of [3H]DA and that the outflow of3H-labeled metabolites was similar with the two different stimulation procedures. Removal of Ca2+ from the superfusate resulted in a marked reduction in the tritium release evoked by nicotine, whereas the electrical stimulation-evoked tritium release was completely dependent on external Ca2+. The L-and N-type calcium channel blockers omega-conotoxin GVIA and Cd2+ inhibited the tritium release from the striatum evoked by either nicotine or electrical stimulation, whereas the L-type and T-type channel blockers diltiazem and Ni2+ did not alter release of [3H]DA. We conclude that N-type voltage-sensitive Ca2+ channels participate in striatal dopamine release, and we speculate that nicotinic receptor-operated ion channels permeable to cations such as Ca2+ and N-type voltage-sensitive calcium channels may simultaneously open up, and they additively increase free intracellular Ca2+ concentration.


Journal of Neural Transmission | 1994

Evidence that ibogaine releases dopamine from the cytoplasmic pool in isolated mouse striatum

L. Hársing; H. Sershen; A. Lajtha

We measured the effect of ibogaine on the tritium efflux from isolated mouse striatum preloaded with [3H]dopamine ([3H]DA). Ibogaine increased the basal tritium outflow in a concentration-dependent manner, but it was without effect on electrical stimulation-induced tritium overflow. Separation of the released radioactivity after ibogaine administration showed that this drug increased the release of [3H]DA and [3H]-dihydroxyphenylacetic acid ([3H]DOPAC), but the efflux of O-methylated-deaminated metabolites was not changed. The dopamine (DA)-releasing effect of ibogaine was reduced by the DA uptake inhibitors cocaine and nomifensine. The tritium efflux evoked by ibogaine was not altered by omission of Ca2+ from the perfusion buffer or by inhibition of the voltage-sensitive Na+ channels with tetrodotoxin. Ibogaine maintained its effect on release from superfused striatum prepared from reserpine-pretreated mice. The ibogaine-induced tritium release measured from mouse striatum that was preloaded with [3H]DA was not affected by the D-2 DA receptor ligands (−)-quinpirole and (+/−)-sulpiride, indicating that the ibogaine-induced release is not subject to presynaptic autoreceptor regulation. Ibogaine failed to affect [3H]DA uptake and retention in mouse striatum. These data indicate that at the nerve terminal level ibogaine releases DA, and the primary source for the release is probably the cytoplasmic pool. The DA-releasing effect of ibogaine may have importance in mediation of its hallucinogenic action, as seen in a frequent practice in African cults.


Neurochemical Research | 1993

Effect of acetyl-l-carnitine on extracellular amino acid levels in vivo in rat brain regions

Eugene Toth; L. Hársing; Henry Sershen; Maria Teresa Ramacci; A. Lajtha

Acetyl-l-carnitine (ALCAR) was found to have beneficial effects in senile patients. In recent years many of its effects on the nervous system have been examined, but its mechanism(s) of action remains to be elucidated. We previously reported that it causes release of dopamine in the striatum. In the present paper we report that ALCAR, when administered at intracerebral sites via microdialysis, stimulates the release of amino acids in a concentration-dependent and regionally heterogeneous manner. The effect was strong in the striatum and cerebellum, less so in the frontal cortex, and weak in the thalamus. Seven amino acids were measured: the increase in the level of aspartate, glutamate, and taurine was substantial, and the increase in the level of glycine, serine, threonine, alanine, and glutamine in the microdialysate was minor. The stimulatory effect of ALCAR on the release of amino acids in the striatum was inhibited by the muscarinic antagonist atropine, but was not inhibited by the nicotinic antagonist mecamylamine. The effect of ALCAR on the levels of most of the amino acids tested was independent of the presence of Ca2+ in the perfused. These results indicate that ALCAR, when administered intracerebrally at fairly high concentrations, can affect the level and the release not only of such neurotransmitters as acetylcholine and dopamine, but also of amino acids. The mechanism of action of ALCAR on the release of cerebral amino acids may involve the participation of muscarinic receptors or may be mediated through the release of dopamine, but the lack of Ca2+ dependence indicates a release from the cytoplasmic amino acid pool, possibly through the effect of ALCAR on cell membrane permeability.


Neurochemical Research | 2010

Alterations in Brain Extracellular Dopamine and Glycine Levels Following Combined Administration of the Glycine Transporter Type-1 Inhibitor Org-24461 and Risperidone

Katalin Nagy; Bernadett Marko; Gabriella Zsilla; Péter Mátyus; Katalin Pallagi; Geza Szabo; Zsolt Juranyi; Jozsef Barkoczy; György Lévay; L. Hársing

The most dominant hypotheses for the pathogenesis of schizophrenia have focused primarily upon hyperfunctional dopaminergic and hypofunctional glutamatergic neurotransmission in the central nervous system. The therapeutic efficacy of all atypical antipsychotics is explained in part by antagonism of the dopaminergic neurotransmission, mainly by blockade of D2 dopamine receptors. N-methyl-d-aspartate (NMDA) receptor hypofunction in schizophrenia can be reversed by glycine transporter type-1 (GlyT-1) inhibitors, which regulate glycine concentrations at the vicinity of NMDA receptors. Combined drug administration with D2 dopamine receptor blockade and activation of hypofunctional NMDA receptors may be needed for a more effective treatment of positive and negative symptoms and the accompanied cognitive deficit in schizophrenia. To investigate this type of combined drug administration, rats were treated with the atypical antipsychotic risperidone together with the GlyT-1 inhibitor Org-24461. Brain microdialysis was applied in the striatum of conscious rats and determinations of extracellular dopamine, DOPAC, HVA, glycine, glutamate, and serine concentrations were carried out using HPLC/electrochemistry. Risperidone increased extracellular concentrations of dopamine but failed to influence those of glycine or glutamate measured in microdialysis samples. Org-24461 injection reduced extracellular dopamine concentrations and elevated extracellular glycine levels but the concentrations of serine and glutamate were not changed. When risperidone and Org-24461 were added in combination, a decrease in extracellular dopamine concentrations was accompanied with sustained elevation of extracellular glycine levels. Interestingly, the extracellular concentrations of glutamate were also enhanced. Our data indicate that coadministration of an antipsychotic with a GlyT-1 inhibitor may normalize hypofunctional NMDA receptor-mediated glutamatergic neurotransmission with reduced dopaminergic side effects characteristic for antipsychotic medication.


Neurochemical Research | 2001

The role of glycineB binding site and glycine transporter (GlyT1) in the regulation of [3H]GABA and [3H]glycine release in the rat brain

L. Hársing; Sándor Sólyom; Cecilia Salamon

The effect of N-methyl-D-aspartic acid (NMDA), a selective glutamate receptor agonist, on the release of previously incorporated [3H]γ-aminobutyric acid(GABA) was examined in superfused striatal slices of the rat. NMDA (0.01 to 1.0 mM) increased [3H]GABA overflow with an EC50 value of 0.09 mM. The [3H]GABA releasing effect of NMDA was an external Ca2+-dependent process and the GABA uptake inhibitor nipecotic acid (0.1 mM) potentiated this effect. These findings support the view that NMDA evokes GABA release from vesicular pool in striatal GABAergic neurons. Addition of glycine (1 mM), a cotransmitter for NMDA receptor, did not influence the NMDA-induced [3H]GABA overflow. Kynurenic acid (1 mM), an antagonist of glycineB site, decreased the [3H]GABA-releasing effect of NMDA and this reduction was suspended by addition of 1 mM glycine. Neither glycine nor kynurenic acid exerted effects on resting [3H]GABA outflow. These data suggest that glycineB binding site at NMDA receptor may be saturated by glycine released from neighboring cells. Glycyldodecylamide (GDA) and N-dodecylsarcosine, inhibitors of glycineT1 transporter, inhibited the uptake of [3H]glycine (IC50 33 and 16 μM) in synaptosomes prepared from rat hippocampus. When hippocampal slices were loaded with [3H]glycine, resting efflux was detected whereas electrical stimulation failed to evoke [3H]glycine overflow. Neither GDA (0.1 mM) nor N-dodecylsarcosine (0.3 mM) influenced [3H]glycine efflux. Using Krebs-bicarbonate buffer with reduced Na+ for superfusion of hippocampal slices produced an increased [3H]glycine outflow and electrical stimulation further enhanced this release. These experiments speak for glial and neuronal [3H]glycine release in hippocampus with a dominant role of the former one. GDA, however, did not influence resting or stimulated [3H]glycine efflux even when buffer with low Na+ concentration was applied.


Neurochemical Research | 1995

The role of various calcium and potassium channels in the regulation of somatodendritic serotonin release

Erzsebet Bagdy; L. Hársing

We prepared slices from midbrain containing the raphe nuclei and from hippocampus of rats. The brain slices were loaded with [3H]serotonin and superfused in order to measure the release of radioactivity at rest and in response to electrical stimulation. No difference was observed in the resting and stimulated fractional release of tritium in the somatodendritic and axon terminal parts of serotonergic neurons. The selective 5-HT1A receptor agonist 8-OH-DPAT decreased the electrically induced tritium effux from raphe nuclei slices preloaded with [3H]serotonin, and this inhibition was reversed by 5-HT1A receptor antagonist (+)WAY-100135. The 5-HT1B receptor agonist CGS-12066B but not 8-OH-DPAT, inhibited the stimulation-evoked tritium efflux from hippocampal slices after labeling with [3H]serotonin. The electrical stimulation-evoked tritium efflux in raphe nuclei slices incubate with [3H]serotonin was completely external Ca2+-dependent, and omega-conotoxin GVIA and Cd2+, but not diltiazem, inhibited the tritium overflow. In raphe nuclei slices 4-aminopyridine enhanced the electrical stimulation-induced trititum release in a concentration-dependent manner. The inhibition of tritium efflux by 8-OH-DPAT was abolished with 4-aminopyridine. Glibenclamide or tolbutamide proved to be ineffective. These data indicate that (1) different 5-HT receptor subtypes (5-HT1A and 5-HT1B) regulate dendritic and axon terminal 5-HT release; (2) serotonin release from the dendrites may be regulated by the voltage-sensitive N-type Ca2+ channels; (3) the 5-HT1A receptor-mediated inhibition of serotonin release may be due to opening of voltage-sensitive K+ channels.


Biochemical and Biophysical Research Communications | 1979

Effect of suramin (Bayer 205) on renal ornithine decarboxylase activity and polyamine concentrations in rats

L. Selmeci; E. Pósch; Gyorgy Simon; L. Hársing

Abstract After a single high dose (20 mg/100 g i.v.) of suramin ornithine decarboxylase activity was increased rapidly in the rat kidney. Enzyme kinetic measurements indicate that on the basis of K m values renal ornithine decarboxylases from control or suramin treated rats are indistinguishable. Renal nucleic acid and polyamine levels were also enhanced in response to suramin. Changes observed in this study are considered as biochemical signs of induced renal growth.

Collaboration


Dive into the L. Hársing's collaboration.

Top Co-Authors

Avatar

E. Pósch

Semmelweis University

View shared research outputs
Top Co-Authors

Avatar

Fazekas A

Semmelweis University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. S. Vizi

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

George T. Somogyi

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge