L.J. Noble
University of California, San Francisco
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by L.J. Noble.
Nature | 2012
Story C. Landis; Susan G. Amara; Khusru Asadullah; Christopher P. Austin; Robi Blumenstein; Eileen W. Bradley; Ronald G. Crystal; Robert B. Darnell; Robert J. Ferrante; Howard Fillit; Robert Finkelstein; Marc Fisher; Howard E. Gendelman; Robert M. Golub; John L. Goudreau; Robert A. Gross; Amelie K. Gubitz; Sharon E. Hesterlee; David W. Howells; John R. Huguenard; Katrina Kelner; Walter J. Koroshetz; Dimitri Krainc; Stanley E. Lazic; Michael S. Levine; Malcolm R. Macleod; John M. McCall; Richard T. Moxley; Kalyani Narasimhan; L.J. Noble
The US National Institute of Neurological Disorders and Stroke convened major stakeholders in June 2012 to discuss how to improve the methodological reporting of animal studies in grant applications and publications. The main workshop recommendation is that at a minimum studies should report on sample-size estimation, whether and how animals were randomized, whether investigators were blind to the treatment, and the handling of data. We recognize that achieving a meaningful improvement in the quality of reporting will require a concerted effort by investigators, reviewers, funding agencies and journal editors. Requiring better reporting of animal studies will raise awareness of the importance of rigorous study design to accelerate scientific progress.
The Journal of Neuroscience | 2002
L.J. Noble; Frances Donovan; Takuji Igarashi; Staci Goussev; Zena Werb
Inflammation in general and proteinases generated as a result are likely mediators of early secondary pathogenesis after spinal cord injury. We report that matrix metalloproteinase-9 (MMP-9) plays an important role in blood–spinal cord barrier dysfunction, inflammation, and locomotor recovery. MMP-9 was present in the meninges and neurons of the uninjured cord. MMP-9 increased rapidly after a moderate contusion spinal cord injury, reaching a maximum at 24 hr, becoming markedly reduced by 72 hr, and not detectable at 7 d after injury. It was seen in glia, macrophages, neutrophils, and vascular elements in the injured spinal cord at 24 hr after injury. The natural tissue inhibitors of MMPs were unchanged over this time course. MMP-9-null mice exhibited significantly less disruption of the blood–spinal cord barrier, attenuation of neutrophil infiltration, and significant locomotor recovery compared with wild-type mice. Similar findings were observed in mice treated with a hydroxamic acid MMP inhibitor from 3 hr to 3 d after injury, compared with the vehicle controls. Moreover, the area of residual white matter at the lesion epicenter was significantly greater in the inhibitor-treated group. This study provides evidence that MMP-9 plays a key role in abnormal vascular permeability and inflammation within the first 3 d after spinal cord injury, and that blockade of MMPs during this critical period attenuates these vascular events and leads to improved locomotor recovery. Our findings suggest that early inhibition of MMPs may be an efficacious strategy for the spinal cord-injured patient.
Brain Research | 2001
Motoki Sato; Edward F. Chang; Takuji Igarashi; L.J. Noble
We have examined regional neuronal injury after traumatic brain injury using Fluoro-Jade, an acidic dye that exhibits a marked affinity for both the degenerating neuronal cell body and its processes and have determined the extent to which early injury corresponds to regional patterns of neuronal loss. Rats (n=45) were subjected to lateral fluid percussion brain injury and euthanized at 3 h to 28 days post injury. Complementary Fluoro-Jade, silver impregnation methods and TUNEL were used to assess neuronal injury. Neuronal loss was evaluated in sections immunostained for NeuN, a neuronal specific nuclear protein. Overt neuronal cell loss was evident by 7 days post injury in the cortex, hippocampus and thalamus. Injured neurons were apparent in the ipsilateral cortex bordering the impact site, hippocampus (CA1 and dentate), thalamus, and vermis of the cerebellum as early as 3 h post injury. Degenerating neurons were maximal by 1 and 3 days in the cortex and hippocampus, by 3 and 7 days in the cerebellum, and by 7 days in the thalamus. The regional distribution of Fluoro-Jade-labeled neurons corresponded to a similar pattern of silver and TUNEL staining. Together, these findings demonstrate a regionally specific temporal pattern of neuronal injury that results in overt neuronal cell loss within both cortical and subcortical regions.
Journal of Cerebral Blood Flow and Metabolism | 1998
Christopher P. Turner; Marcelle Bergeron; Paul G. Matz; Angelo Zegna; L.J. Noble; S. Scott Panter; Frank R. Sharp
The heme oxygenase-1 gene, HO-1, induced by heme, ischemia, and heat shock, metabolizes heme to biliverdin, free iron, and carbon monoxide. Though the distribution of HO-1 has been described in normal rat brain, little is known about how extracellular heme proteins in the subarachnoid space distribute in brain. To address this issue, hemoglobin was injected into the cisterna magna of adult rats. Expression of HO-1 in these animals was compared with saline-injected, BSA-injected, and uninjected controls. Western blot analysis showed that 24 hours after injection oxyhemoglobin increased HO-1 levels approximately four- to fivefold in all brain regions studied compared with saline-injected and BSA-injected controls. In the brain, HO-1 immunoreactivity was evident at 4 hours and peaked at 24 hours after oxyhemoglobin injections, returning to control levels by 4 to 8 days. This HO-1 induction was detected mainly in cells with small, rounded somas bearing two to four truncated processes, a morphology consistent with that of microglia. These cells were double-stained with the microglial marker, OX42, in every brain region examined. It is proposed that subarachnoid hemoglobin may be taken up into microglia wherein heme induces HO-1.
Brain Research | 1996
Kazumasa Fukuda; Jeremy D. Richmon; Motoki Sato; Frank R. Sharp; S. Scott Panter; L.J. Noble
In this study we examined the induction of heme oxygenase-1 (HO-1) in glia in the traumatized rat brain. HO-1 was immunolocalized in fixed sections of brain 3 h to 5 days after injury. Induction of this enzyme in astrocytes, microglia/macrophages, and oligodendrocytes was evaluated using immunofluorescent double labeling with monoclonal antibodies to glial fibrillary acidic protein, complement C3bi receptor, and myelin basic protein. Induction of HO-1 was apparent in the injured hemisphere and cerebellum as early as 24 h postinjury. The protein was likewise noted in similar regions of the brain at 72 h postinjury but appeared to be more widespread in its distribution. At 5 days postinjury, there was a notable decline in the degree of immunostaining for HO-1. HO-1 was typically induced in astrocytes in the cerebral cortex at the site of impact, in the deep cortical layers adjacent to the hemorrhagic lesions, and in the hippocampus. HO-1 was induced in Bergmann glia in the vermis of cerebellum. In addition, HO-1 was also induced in microglia/macrophages scattered throughout the ipsilateral cerebral cortex, cerebellum and subarachnoid space. These findings demonstrate prolonged glial induction of HO-1 in the traumatized brain. Such a response may reflect a protective role of these cells against secondary insults including oxidative stress.
European Journal of Pharmacology | 1990
Alan I. Faden; J.A. Ellison; L.J. Noble
Abstract The potential role of N-methyl-D-aspartate (NMDA) receptors in the pathophysiology of spinal cord injury was examined in rats by comparing the effects of the non-competitive NMDA antagonist dextrorphan and the competitive NMDA antagonist 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) of the behavioral and anatomical consequences of impact trauma to the spinal cord. Treatment with either dextrorphan or CPP, administered intrathecally 15 min after trauma, significantly improved chronic (4 weeks) behavioral recovery. Treatment with CPP, but not dextrorphan, limited the decline in serotonin below the injury zone, as shown by both immunocytochemistry and high performance liquid chromatography. Beneficial effects of CPP were dose-dependent. Dextrorphan treatment also improved behavioral outcome when the drug was administered intravenously. These studies implicate NMDA receptor-mediated excitotoxins in tissue damage following spinal cord trauma and suggest that NMDA antagonists may be of value in the treatment of acute, clinical spinal cord injury.
Experimental Neurology | 2002
Winnie Tong; Takuji Igarashi; Donna M. Ferriero; L.J. Noble
We characterized the regional and temporal patterns of neuronal injury and axonal degeneration after controlled cortical impact of moderate severity in mice at postnatal day 21. Animals were euthanized at 1, 3, or 7 days after injury or sham operation. The brains were removed and prepared for immunolocalization of neurons and microglia/macrophages or subjected to Fluoro-Jade and silver stains, indicators of irreversible neuronal cell injury and axonal degeneration. There was significant neuronal loss in both the ipsi- and the contralateral cortices, ipsilateral hippocampus, and ipsilateral thalamus by 7 days post injury compared to sham-operated animals. Activated microglia/macrophages were most prominent in regions of neuronal loss including the ipsilateral cortex, hippocampus, and thalamus. Neuronal injury, as evidenced by Fluoro-Jade labeling, was not apparent in sham-operated animals. In injured animals, labeling was identified in the ipsilateral cortex and hippocampus at 1 and 3 days post injury. Silver- and Fluoro-Jade-labeled degenerating axons were observed in the ipsilateral subcortical white matter by 1 day post injury, in the ipsilateral external capsule, caudate putamen, and contralateral subcortical white matter by 3 days post injury, and in the internal capsule, pyramidal tracts, and cerebellar peduncles by 7 days post injury. Our findings demonstrate that controlled cortical impact in the developing brain generates neuronal loss in both the ipsilateral and the contralateral cortex, a temporally distinct pattern of subcortical neuronal injury/death, and widespread white matter damage. These observations serve as an important baseline for studying human brain injury and optimizing therapies for the brain-injured child.
Journal of Neurotrauma | 2003
Pi-Chuan Fan; Toshihiro Yamauchi; L.J. Noble; Donna M. Ferriero
Children younger than 4 years old have worse outcome after traumatic brain injury (TBI) compared to older children and adults. This increased susceptibility may in part be due to differences in the response to oxidative stress. We hypothesized that the immature brain does not have an adequate compensatory response to injury from oxidative stress. To begin to address this hypothesis, we first compared the general dimensions and water content in postnatal day 21 (P21) and adult murine brain in the naive state as well as after injury (edema). We examined glutathione peroxidase (GPx ) activity in cortical and subcortical regions in P21 and adult murine brain following a controlled cortical impact. Brain dimensions including areas of the mantle and hemispheres were similar in each of these groups. The thickness of the cortical mantle was significantly greater in the immature brain as compared to the mature brain (p = 0.01, respectively). Brain edema was assessed through changes in water content, and the response to oxidative challenge was identified by changes in GPx activity. The P21 brain was similar in vulnerability to posttraumatic brain edema when compared to adult. GPx activity in the adult brain was increased within 24 h post-injury in the cortex, thalamus and hippocampus (ANOVA, p < 0.05), whereas there was no compensatory increase in GPx activity in P21 brain, although baseline levels had reached adult levels developmentally. These findings support our hypothesis and illuminate the important role of oxidative stress after TBI in the immature brain that warrants further study.
Neuroscience Letters | 1995
Kazumasa Fukuda; S. Scott Panter; Frank R. Sharp; L.J. Noble
The induction of heme oxygenase-1 (HO-1), the 32 kDa heat shock protein, was examined in the traumatized rat brain. At 24 h after either mild or severe brain injury or sham surgery, HO-1 was immunolocalized in fixed sections of brain. After mild brain injury, hemorrhage was apparent in the subarachnoid space, external capsule and cerebellum. HO-1 was induced in similar areas in macrophages in the subarachnoid space and in glia in the cortex adjacent to the site of impact, the ipsilateral hippocampus, external capsule and cerebellum. After severe brain injury, extensive hemorrhage occurred in the external capsule, hippocampus and cerebellum. HO-1 was induced in glia in these areas of hemorrhage but was more extensive than that seen after mild injury and included the contralateral external capsule and hippocampus. These findings demonstrate remarkable induction of HO-1 in glia in the injured brain. Since heme is a potent inducer of HO-1, it is likely that the subarachnoid and/or intraparenchymal blood induced HO-1 in the glia where the heme was metabolized to biliverdin, iron, and carbon monoxide.
Experimental Neurology | 2001
Takuji Igarashi; Ting-Ting Huang; L.J. Noble
Neuronal loss was quantified in both cortical and subcortical brain regions after traumatic brain injury in male and female nontransgenic (nTg) and transgenic (Tg) mice that overexpress human copper, zinc superoxide dismutase. Mice were euthanized at 7 days after a controlled cortical impact injury. Sections of brain were processed for immunolocalization of NeuN, a neuronal nuclear antigen, and the complement type 3 receptor, a marker of microglia/macrophages, and stained for iron. Cortical lesion volume and neuronal loss in the medial and/or lateral ventroposterior thalamic nuclei were significantly less in the nTg female compared to the nTg male (P = 0.0373 and P = 0.0023, respectively). In contrast, in CA3 of the hippocampus and laterodorsal thalamic nucleus (LD), there were no gender differences in neuronal loss between these nTg groups. Cortical lesion volume was significantly reduced in Tg males compared to nTg males (P = 0.0137) and was unchanged in the Tg females compared to the nTg females. Neuronal loss was attenuated in the CA3 and LD in the Tg females compared to the nTg females (P = 0.0252 and P = 0.0244, respectively). A similar protection was not observed in the Tg males. Microglial activation paralleled the pattern of neuronal loss and was most consistently aligned with iron deposition in the cortex and hippocampus. No overt differences were found in the pattern of microglial activation or iron staining between nTg and Tg mice nor between genders. Our findings demonstrate that neuroprotection, afforded by overexpression of copper, zinc superoxide dismutase, exhibits both regional and gender specificity.